
Modern C

Jens Gustedt

INRIA, FRANCE

ICUBE, STRASBOURG, FRANCE

This is the 2nd edition (minor rev. 2) of this book, as of Oct. 10, 2019.
The free version, sample code, links to Manning’s print edition and much more is available at

https://modernc.gforge.inria.fr/

Special thanks go to the people that encouraged the writing of this book by providing me with constructive
feedback, including

colleagues and other interested readers, Cédric Bastoul, Lucas Nussbaum, Vincent Loechner, Kliment Yanev,
Szabolcs Nagy, Marcin Kowalczuk, Ali Asad Lotia, Richard Palme, Yann Barsamian, Fernando Oleo,

Róbert Kohányi, Jean-Michel Gorius ...

Manning’s staff Jennifer Stout, Nitin Gode and Tiffany Taylor, ...

... and the impressive number of reviewers provided by Manning: Adam Kalisz, Andrei de Araujo Formiga,
Christoph Schubert, Erick Nogueira do Nascimento, Ewelina Sowka, Glen Sirakavit, Hugo Durana,

Jean-François Morin, Kent R. Spillner, Louis Aloia, Manu Raghavan Sareena, Nitin Gode, Rafael Aiquel,
Sanchir Kartiev, and Xavier Barthel

Many others have contributed to the success of this book, my sincerest thanks to all of you.

©2016-2019 Jens Gustedt, Strasbourg, France.

This work is licensed under a Creative Commons “Attribution-NonCommercial-
NoDerivatives 4.0 International” license.

https://modernc.gforge.inria.fr/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

About this book

The C programming language has been around since the early seventies (see Ritchie
[1993]). Since then, C has been used in an incredible number of applications. Programs
and systems written in C are all around us: in personal computers, phones, cameras, set-top
boxes, refrigerators, cars, mainframes, satellites ... basically in any modern device that has
a programmable interface.

In contrast to the ubiquitous presence of C programs and systems, good knowledge
of and about C is much more scarce. Even experienced C programmers often appear to
be stuck in some degree of self-inflicted ignorance about the modern evolution of the C
language. A likely reason for this is that C is seen as an "easy to learn" language, allowing
a programmer with little experience to quickly write or copy snippets of code that at least
appear to do what it’s supposed to. In a way, C fails to motivate its users to climb to higher
levels of knowledge.

This book is intended to change that general attitude, so it is organized in levels that
reflect familiarity with the C language and programming in general. This structure may
go against some habits of the book’s readers; in particular, it splits some difficult subjects
(such as pointers) across levels in order to not swamp readers too early with the wrong
information. We’ll explain the book’s organization in more detail shortly.

Generally, although many universally applicable ideas will be presented, that would
also be valid for other programming languages (such as Java, Python, Ruby, C# or C++)
the book primarily addresses concepts and practices that are unique to C or are of particular
value when programming in the C language.

C versions. As the title of this book suggests, today’s C is not the same language as
the one originally designed by its creator. Right from the start, C has been in a contin-
uous process of adjustment and improvement. Usually, early C is referred to as K&R C
(Kernighan and Ritchie C) after the first book that made the language popular Kernighan
and Ritchie [1978]. Since then, it has undergone an important standardization and exten-
sion process, now driven by ISO, the International Standards Organization. This led to the
publication of a series of C standards in 1989, 1999, 2011, and 2018, commonly referred to
as C89, C99, C11, and C17. The C standards committee puts a lot of effort into guarantee-
ing backward compatibility such that code written for earlier versions of the language, say
C89, should compile to a semantically equivalent executable with a compiler that imple-
ments a newer version. Unfortunately, this backward compatibility has had the unwanted
side effect of not motivating projects that could benefit greatly from the new features to
update their code base.

In this book, we will mainly refer to C17, as defined in JTC1/SC22/WG14 [2018],
but at the time of this writing some compilers don’t implement this standard completely.
If you want to compile the examples in this book, you will need at least a compiler that
implements most of C99. For the changes that C11 added to C99, using an emulation
layer such as my macro package P99 might suffice; the package is available at http:
//p99.gforge.inria.fr.

http://p99.gforge.inria.fr
http://p99.gforge.inria.fr

ii

C and C++. Programming has become a very important cultural and economic ac-
tivity, and C remains an important element in the programming world. As in all human
activities, progress in C is driven by many factors: corporate or individual interest, pol-
itics, beauty, logic, luck, ignorance, selfishness, ego, sectarianism, ... (add your primary
motivation here). Thus the development of C has not been and cannot be ideal. It has flaws
and artifacts that can only be understood with their historical and societal context.

An important part of the context in which C developed was the early appearance of its
sister language, C++. One common misconception is that C++ evolved from C by adding
its particular features. Although this is historically correct (C++ evolved from a very early
C), it is not particularly relevant today. In fact, C and C++ separated from a common
ancestor more than 30 years ago and have evolved separately ever since. But this evolution
of the two languages has not taken place in isolation; they have exchanged and adopted
each other’s concepts over the years. Some new features, such as the recent addition of
atomics and threads, have been designed in close collaboration between the C and C++
standard committees.

Nevertheless, many differences remain, and generally all that is said in this book is
about C, not C++. Many code examples that are given will not even compile with a C++
compiler. So we should not mix sources of both languages.

Takeaway A C and C++ are different: don’t mix them, and don’t mix them up.

Note that when you are working through this book, you will encounter many lines
marked like that one. These are takeaways that summarize features, rules, recommenda-
tions, and so on. There is a list of these takeaways toward the end of the book, which you
might use as a cheat sheet.

Requirements. To be able to profit from this book, you need to fulfill some minimal
requirements. If you are uncertain about any of these, please obtain or learn them first;
otherwise, you might waste a lot of time.

First, you can’t learn a programming language without practicing it, so you must have
a decent programming environment at your disposal (usually on a PC or laptop), and you
must master it to some extent. This environment can be integrated (an IDE) or a collection
of separate utilities. Platforms vary widely in what they offer, so it is difficult to advise
on specifics. On Unix-like environments such as Linux and Apple’s macOS, you will find
editors such as emacs and vim, and compilers such as c99, gcc, and clang.

You must be able to do the following:
(1) Navigate your file system. File systems on computers are usually organized hier-

archically in directories. You must be able to navigate through these to find and
manipulate files.

(2) Edit programming text. This is different from editing a letter in a word pro-
cessing environment. Your environment, editor, or whatever it is called should
have a basic understanding of the programming language C. You will see that if
you open a C file (which usually has the file extension .c). It might highlight
some keywords or help you indent your code according to the nestedness of {}
brackets.

(3) Execute a program. The programs you will see here are very basic at first and will
not offer you any graphical features. They need to be launched in the command
line. An example of such a program that is launched that way is the compiler.
On Unix-like environments, the command line is usually called a shell and is
launched in a (or the) console or terminal.

(4) Compile programming text. Some environments provide a menu button or a key-
board shortcut for compilation. An alternative to that is to launch the compiler in
the command line of a terminal. This compiler must adhere to recent standards;
don’t waste your time with a compiler that does not conform.

ABOUT THIS BOOK iii

If you have never programmed before, this book will be tough. Knowing some of
the following will help: Basic, C (historical versions), C++, Fortran, R, bash, JavaScript,
Java, MATLAB, Perl, Python, Scilab, and so on. But perhaps you have had some other
programming experience, maybe even without noticing. Many technical specifications
actually come in some sort of specialized language that can be helpful as an analogy: for
example, HTML for web pages and LaTeX for document formatting.

You should have an idea of the following concepts, although their precise meanings
may be a bit different in C than in the context where you learned them:

(1) Variables — Named entities that hold values
(2) Conditionals — Doing something (or not) subject to a precise condition
(3) Iteration — Doing something repeatedly for a specified number of times or until

a certain condition is met

Source code. Many of the programming code snippets that are presented in this book
are available for download as a .zip archive from the book’s website at https://gforge.
inria.fr/frs/download.php/latestfile/5298/code.zip. This allows you to view
them in context and to compile them and try them out. The archive also contains a
Makefile with a description of the components that are needed to compile these files.
It is centered around Linux or, more generally, POSIX systems, but it may also help you to
find out what you need when you are on a different system.

Exercises and challenges. Throughout this book, you’ll see exercises that are meant
to get you thinking about the concepts being discussed. These are probably best done
directly along with your reading. Then there is another category called “challenges.” These
are generally more demanding. You will need to do some research to even understand what
they are about, and the solutions will not come all by themselves: they will require effort.
They will take more time, sometimes hours or, depending on your degree of satisfaction
with your work, even days. The subjects covered in these challenges are the fruit of my
own personal bias toward “interesting questions” from my personal experience. If you
have other problems or projects in your studies or your work that cover the same ground,
they should do equally well. The important aspect is to train yourself by first searching for
help and ideas elsewhere, and then to get your hands dirty and get things done. You will
only learn to swim if you jump into the water.

Organization. This book is organized in levels, numbered from 0 to 3. The starting
level 0, named "Encounter," will summarize the very basics of programming with C. Its
principal role is to remind you of the main concepts we have mentioned and familiarize
you with the special vocabulary and viewpoints that C applies.1 By the end of it, even if
you don’t have much experience in programming with C, you should be able to understand
the structure of simple C programs and start writing your own.

The "Acquaintance" level 1 details most principal concepts and features such as con-
trol structures, data types, operators, and functions. It should give you a deeper under-
standing of the things that are going on when you run your programs. This knowledge
should be sufficient for an introductory course in algorithms and other work at that level,
with the notable caveat that pointers are not yet fully introduced.

The "Cognition" level 2 goes to the heart of the C language. It fully explains point-
ers, familiarizes you with C’s memory model, and allows you to understand most of C’s
library interface. Completing this level should enable you to write C code professionally;
it therefore begins with an essential discussion about the writing and organization of C
programs. I personally would expect anybody who graduated from an engineering school
with a major related to computer science or programming in C to master this level. Don’t
be satisfied with less.

1One of C’s special viewpoints is that indexing starts at 0, and not at 1 as in Fortran.

https://gforge.inria.fr/frs/download.php/latestfile/5298/code.zip
https://gforge.inria.fr/frs/download.php/latestfile/5298/code.zip

iv

The "Experience" level 3 then goes into detail about specific topics, such as perfor-
mance, reentrancy, atomicity, threads, and type-generic programming. These are probably
best discovered as you go, which is when you encounter them in the real world. Neverthe-
less, as a whole, they are necessary to round off the discussion and to provide you with full
expertise in C. Anybody with some years of professional programming in C or who heads
a software project that uses C as its main programming language should master this level.

Author. Jens Gustedt completed his studies of mathematics
at the University of Bonn and Berlin Technical University. His re-
search at that time covered the intersection between discrete math-
ematics and efficient computation. Since 1998, he has been work-
ing as a senior scientist at the French National Institute for Com-
puter Science and Control (INRIA), first in the LORIA lab, Nancy,
and since 2013 in the ICube lab, Strasbourg.

Throughout his career, most of his scientific research has been
accompanied by the development of software, at the beginning
mostly in C++, and then later exclusively in C. He now serves
AFNOR as an expert on the ISO committee JTC1/SC22/WG14
and is co-editor of the C standard document ISO/IEC 9899:2018. He also has a successful
blog that deals with programming in C and related topics: https://gustedt.wordpress.
com.

https://www.iso.org/standard/74528.html
https://gustedt.wordpress.com
https://gustedt.wordpress.com

Contents

About this book i
C versions i
C and C++ ii
Requirements ii
Source code iii
Exercises and challenges iii
Organization iii
Author iv

Level 0. Encounter 1
1. Getting started 2
1.1. Imperative programming 2
1.2. Compiling and running 4
Summary 7
2. The principal structure of a program 8
2.1. Grammar 8
2.2. Declarations 9
2.3. Definitions 11
2.4. Statements 13
Summary 15

Level 1. Acquaintance 17
Buckle up 18
3. Everything is about control 21
3.1. Conditional execution 21
3.2. Iterations 23
3.3. Multiple selection 27
Summary 28
4. Expressing computations 29
4.1. Arithmetic 29
4.2. Operators that modify objects 32
4.3. Boolean context 33
4.4. The ternary or conditional operator 35
4.5. Evaluation order 35
Summary 36
5. Basic values and data 38
5.1. The abstract state machine 38
5.2. Basic types 42
5.3. Specifying values 45
5.4. Implicit conversions 48
5.5. Initializers 50
5.6. Named constants 51
5.7. Binary representions 56
Summary 63

v

vi CONTENTS

6. Derived data types 65
6.1. Arrays 65
6.2. Pointers as opaque types 71
6.3. Structures 73
6.4. New names for types: type aliases 78
Summary 79
7. Functions 80
7.1. Simple functions 80
7.2. main is special 82
7.3. Recursion 84
Summary 89
8. C library functions 90
8.1. General properties of the C library and its functions 90
8.2. Mathematics 94
8.3. Input, output, and file manipulation 96
8.4. String processing and conversion 105
8.5. Time 109
8.6. Runtime environment settings 111
8.7. Program termination and assertions 113
Summary 115

Level 2. Cognition 117
9. Style 118
9.1. Formatting 118
9.2. Naming 119
Summary 122
10. Organization and documentation 123
10.1. Interface documentation 124
10.2. Implementation 126
Summary 132
11. Pointers 133
11.1. Pointer operations 133
11.2. Pointers and structures 140
11.3. Pointers and arrays 143
11.4. Function pointers 145
Summary 149
12. The C memory model 150
12.1. A uniform memory model 150
12.2. Unions 152
12.3. Memory and state 153
12.4. Pointers to unspecific objects 154
12.5. Explicit conversions 155
12.6. Effective types 156
12.7. Alignment 157
Summary 159
13. Storage 160
13.1. malloc and friends 160
13.2. Storage duration, lifetime, and visibility 168
13.3. Digression: using objects "before" their definition 173
13.4. Initialization 175
13.5. Digression: a machine model 177
Summary 179
14. More involved processing and IO 181

CONTENTS vii

14.1. Text processing 181
14.2. Formatted input 186
14.3. Extended character sets 188
14.4. Binary streams 195
14.5. Error checking and cleanup 196
Summary 200

Level 3. Experience 203
15. Performance 203
15.1. Inline functions 206
15.2. Using restrict qualifiers 209
15.3. Measurement and inspection 210
Summary 217
16. Function-like macros 218
16.1. How function-like macros work 219
16.2. Argument checking 221
16.3. Accessing the calling context 224
16.4. Default arguments 226
16.5. Variable-length argument lists 227
16.6. Type-generic programming 234
Summary 239
17. Variations in control flow 240
17.1. A complicated example 241
17.2. Sequencing 244
17.3. Short jumps 246
17.4. Functions 247
17.5. Long jumps 247
17.6. Signal handlers 252
Summary 260
18. Threads 261
18.1. Simple inter-thread control 263
18.2. Race-free initialization and destruction 265
18.3. Thread-local data 267
18.4. Critical data and critical sections 268
18.5. Communicating through condition variables 271
18.6. More sophisticated thread management 275
Summary 277
19. Atomic access and memory consistency 278
19.1. The “happened before” relation 279
19.2. C library calls that provide synchronization 281
19.3. Sequential consistency 283
19.4. Other consistency models 285
Summary 286

Takeaways 287

Bibliography 299

Index 301

LEVEL 0

Encounter

Our mascot for this level is the magpie, one of the most intelligent non-
human species on earth. They are capable of elaborate social rituals
and usage of tools.

This first level of the book may be your first encounter with the programming language
C. It provides you with a rough knowledge about C programs, their purpose, their structure,
and how to use them. It is not meant to give you a complete overview, it can’t and it doesn’t
even try. On the contrary, it is supposed to give you a general idea of what this is all about,
open up questions, and promote ideas and concepts. These then will be explained in detail
in the higher levels.

1

2 0. ENCOUNTER

1. Getting started

This section covers

• Introduction to imperative programming
• Compiling and running code

In this section, I will introduce you to one simple program that has been chosen be-
cause it contains many of the constructs of the C language. If you already have program-
ming experience, you may find that parts of it feel like needless repetition. If you lack such
experience, you might feel overwhelmed by the stream of new terms and concepts.

In either case, be patient. For those of you with programming experience, it’s very
possible that there are subtle details you’re not aware of, or assumptions you have made
about the language that are not valid, even if you have programmed C before. For those
approaching programming for the first time, be assured that after approximately 10 pages
your understanding will have increased a lot, and you should have a much clearer idea of
what programming represents.

An important bit of wisdom for programming in general, and for this book in particu-
lar, is summarized in the following citation from the Hitchhiker’s Guide to the Galaxy by
Douglas Adams Adams [1986]:

Takeaway B Don’t panic.

It’s not worth it. There are many cross references, links, and bits of side information
in the text, and there is an index at the end. Follow those if you have a question. Or just
take a break.

Programming in C is about having the computer complete some specific tasks. A C
program does that by giving orders, much as we would express such orders in the im-
perative tense in many human languages; thus the term imperative programming for this
particular way of organizing computer programs. To get started and see what we are talking
about, consider our first program in listing 1.1:

1.1. Imperative programming. You probably see that this is a sort of language, con-
taining some weird words like main, include, for, and so on, which are laid out and
colored in a peculiar way and mixed with a lot of strange characters, numbers, and text
(“Doing some work”) that looks like ordinary English. It is designed to provide a link be-
tween us, the human programmers, and a machine, the computer, to tell it what to do: to
give it “orders.”

Takeaway 0.1.1.1 C is an imperative programming language.

In this book, we will not only encounter the C programming language, but also some
vocabulary from an English dialect, C jargon, the language that helps us to talk about C.
It will not be possible to immediately explain each term the first time it occurs. But I will
explain each one in time, and all of them are indexed so you can easily cheat and jumpC
to more explanatory text, at your own risk.1

As you can probably guess from this first example, such a C program has different
components that form some intermixed layers. Let’s try to understand it from the inside
out. The visible result of running this program is to output 5 lines of text on the command
terminal of your computer. On my computer, using this program looks something like this:

1Such special terms from C jargon are marked with a C, as shown here.

1. GETTING STARTED 3

LISTING 1.1. A first example of a C program

1 /* This may look like nonsense , but really is -*- mode: C -*- */
2 #include <stdlib.h>
3 #include <stdio.h>
4
5 /* The main thing that this program does. */
6 int main(void) {
7 // Declarations
8 double A[5] = {
9 [0] = 9.0,

10 [1] = 2.9,
11 [4] = 3.E+25,
12 [3] = .00007 ,
13 };
14
15 // Doing some work
16 for (size_t i = 0; i < 5; ++i) {
17 printf("element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n",
18 i,
19 A[i],
20 A[i]*A[i]);
21 }
22
23 return EXIT_SUCCESS;
24 }

Terminal

0 > ./getting-started

1 element 0 is 9, its square is 81

2 element 1 is 2.9, its square is 8.41

3 element 2 is 0, its square is 0

4 element 3 is 7e-05, its square is 4.9e-09

5 element 4 is 3e+25, its square is 9e+50

We can easily identify within our program the parts of the text that this program out-
puts (printsC , in C jargon): the part of line 17 between quotes. The real action happens
between that line and line 20. C calls this a statementC , which is a bit of a misnomer.
Other languages would use the term instruction which describes the purpose better. This
particular statement is a callC to a functionC named printf:

. getting-started.c

17 printf("element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n",
18 i,
19 A[i],
20 A[i]*A[i]);

Here, the printf function receives four argumentsC , enclosed in a pair of parenthesesC ,
(...):

• The funny-looking text (between the quotes) is a so-called string literalC that
serves as a formatC for the output. Within the text are three markers (format
specifiersC) that indicate the positions in the output where numbers are to be

4 0. ENCOUNTER

inserted. These markers start with a % character. This format also contains some
special escape charactersC that start with a backslash: \t and \n.

• After a comma character, we find the word i. The thing i stands for will be
printed in place of the first format specifier, %zu.

• Another comma separates the next argument A[i]. The thing this stands for will
be printed in place of the second format specifier, the first %g.

• Last, again separated by a comma, appears A[i]*A[i], corresponding to the last
%g.

We will later explain what all of these arguments mean. Just remember that we iden-
tified the main purpose of the program (to print some lines on the terminal) and that it
“orders” the printf function to fulfill that purpose. The rest is some sugarC to specify
which numbers will be printed, and how many of them.

1.2. Compiling and running. As shown in the previous subsection, the program text
expresses what we want our computer to do. As such, it is just another piece of text that
we have written and stored somewhere on our hard disk, but the program text as such
cannot be understood by your computer. There is a special program, called a compiler,
that translates the C text into something that your machine can understand: the binary
codeC or executableC . What that translated program looks like and how this translation is
done are much too complicated to explain at this stage.2 Even this entire book will not be
able to explain most of it; that would be the subject of another whole book. However, for
the moment, we don’t need to understand more deeply, as we have the tool that does all the
work for us.

Takeaway 0.1.2.1 C is a compiled programming language.

The name of the compiler and its command-line arguments depend a lot on the platformC

on which you will be running your program. There is a simple reason for this: the target
binary code is platform dependentC : that is, its form and details depend on the computer
on which you want to run it. A PC has different needs than a phone, and your refrigerator
doesn’t speak the same “language” as your set-top box. In fact, that’s one of the reasons for
C to exist: C provides a level of abstraction for all the different machine-specific languages
(usually referred to as assemblerC).

Takeaway 0.1.2.2 A correct C program is portable between different platforms.

In this book, we will put a lot of effort into showing you how to write “correct” C
programs that ensure portability. Unfortunately, there are some platforms that claim to
be “C” but do not conform to the latest standards; and there are conforming platforms
that accept incorrect programs or provide extensions to the C standard that are not widely
portable. So, running and testing a program on a single platform will not always guarantee
portability.

It is the job of the compiler to ensure that the little program shown earlier, once trans-
lated for the appropriate platform, will run correctly on your PC, your phone, your set-top
box, and maybe even your refrigerator.

That said, if you have a POSIX system (such as Linux or macOS), there is a good
chance that a program named c99 might be present and that it is in fact a C compiler. You
could try to compile the example program using the following command:

2In fact, the translation itself is done in several steps that go from textual replacement, over proper compila-
tion, to linking. Nevertheless, the tool that bundles all this is traditionally called a compiler and not a translator,
which would be more accurate.

1. GETTING STARTED 5

Terminal

0 > c99 -Wall -o getting-started getting-started.c -lm

The compiler should do its job without complaining and output an executable file
called getting-started in your current directory.[Exs 3] In the example line,

• c99 is the compiler program.
• -Wall tells it to warn us about anything that it finds unusual.
• -o getting-started tells it to store the compiler outputC in a file named

getting-started.
• getting-started.c names the source fileC , the file that contains the C code

we have written. Note that the .c extension at the end of the filename refers to
the C programming language.

• -lm tells it to add some standard mathematical functions if necessary; we will
need those later on.

Now we can executeC our newly created executableC . Type in

Terminal

0 > ./getting-started

and you should see exactly the same output as I showed you earlier. That’s what
portable means: wherever you run that program, its behaviorC should be the same.

If you are not lucky and the compilation command didn’t work, you will have to look
up the name of your compilerC in your system documentation. You might even have to
install a compiler if one is not available. 4The names of compilers vary. Here are some
common alternatives that might do the trick:

Terminal

0 > clang -Wall -lm -o getting-started getting-started.c

1 > gcc -std=c99 -Wall -lm -o getting-started getting-started.c

2 > icc -std=c99 -Wall -lm -o getting-started getting-started.c

Some of these, even if they are present on your computer, might not compile the
program without complaining.[Exs 5]

With the program in listing 1.1, we presented an ideal world: a program that works
and produces the same result on all platforms. Unfortunately, when programming yourself,
very often you will have a program that works only partially and that may produce wrong
or unreliable results. Therefore, let us look at the program in listing 1.2. It looks quite
similar to the previous one.

If you run your compiler on this program, it should give you some diagnosticC infor-
mation similar to this:

[Exs 3]Try the compilation command in your terminal.
4This is necessary in particular if you have a system with a Microsoft operating system. Microsoft’s native

compilers do not yet fully support even C99, and many features that we discuss in this book will not work. For a
discussion of the alternatives, you might have a look at Chris Wellons’ blog entry “Four Ways to Compile C for
Windows” (https://nullprogram.com/blog/2016/06/13/).
[Exs 5]Start writing a text report about your tests with this book. Note down which command worked for you.

https://nullprogram.com/blog/2016/06/13/

6 0. ENCOUNTER

LISTING 1.2. An example of a C program with flaws

1 /* This may look like nonsense , but really is -*- mode: C -*- */
2
3 /* The main thing that this program does. */
4 void main() {
5 // Declarations
6 int i;
7 double A[5] = {
8 9.0,
9 2.9,

10 3.E+25,
11 .00007 ,
12 };
13
14 // Doing some work
15 for (i = 0; i < 5; ++i) {
16 printf("element␣%d␣is␣%g,␣\tits␣square␣is␣%g\n",
17 i,
18 A[i],
19 A[i]*A[i]);
20 }
21
22 return 0;
23 }

Terminal

0 > c99 -Wall -o bad bad.c

1 bad.c:4:6: warning: return type of 'main' is not 'int' [-Wmain]

2 bad.c: In function 'main':

3 bad.c:16:6: warning: implicit declaration of function 'printf' [-Wimplicit-function...

4 bad.c:16:6: warning: incompatible implicit declaration of built-in function 'printf' ...

5 bad.c:22:3: warning: 'return' with a value, in function returning void [enabled by de...

Here we had a lot of long “warning” lines that are even too long to fit on a terminal
screen. In the end, the compiler produced an executable. Unfortunately, the output when
we run the program is different. This is a sign that we have to be careful and pay attention
to details.

clang is even more picky than gcc and gives us even longer diagnostic lines:

SUMMARY 7

Terminal

0 > clang -Wall -o getting-started-badly bad.c

1 bad.c:4:1: warning: return type of 'main' is not 'int' [-Wmain-return-type]

2 void main() {

3 ^

4 bad.c:16:6: warning: implicitly declaring library function 'printf' with type

5 'int (const char *, ...)'

6 printf("element %d is %g, \tits square is %g\n", /*@\label{printf-start-badly}*/

7 ^

8 bad.c:16:6: note: please include the header <stdio.h> or explicitly provide a declaration

9 for 'printf'

10 bad.c:22:3: error: void function 'main' should not return a value [-Wreturn-type]

11 return 0;

12 ^ ~

13 2 warnings and 1 error generated.

This is a good thing! Its diagnostic outputC is much more informative. In particular,
it gave us two hints: it expected a different return type for main, and it expected us to have
a line such as line 3 from listing 1.1 to specify where the printf function comes from.
Notice how clang, unlike gcc, did not produce an executable. It considers the problem on
line 22 fatal. Consider this to be a feature.

Depending on your platform, you can force your compiler to reject programs that
produce such diagnostics. For gcc, such a command-line option would be -Werror.

So we have seen two of the points in which listings 1.1 and 1.2 differed, and these
two modifications turned a good, standards-conforming, portable program into a bad one.
We also have seen that the compiler is there to help us. It nailed the problem down to the
lines in the program that cause trouble, and with a bit of experience you will be able to
understand what it is telling you.[Exs 6] [Exs 7]

Takeaway 0.1.2.3 A C program should compile cleanly without warnings.

Summary

• C is designed to give computers orders. Thereby it mediates between us (the
programmers) and computers.

• C must be compiled to be executed. The compiler provides the translation be-
tween the language that we understand (C) and the specific needs of the particular
platform.

• C gives a level of abstraction that provides portability. One C program can be
used on many different computer architectures.

• The C compiler is there to help you. If it warns you about something in your
program, listen to it.

[Exs 6]Correct listing 1.2 step by step. Start from the first diagnostic line, fix the code that is mentioned there,
recompile, and so on, until you have a flawless program.

[Exs 7]There is a third difference between the two programs that we didn’t mention yet. Find it.

8 0. ENCOUNTER

2. The principal structure of a program

This section covers
• C grammar
• Declaring identifiers
• Defining objects
• Instructing the compiler with statements

Compared to our little examples in the previous section, real programs will be more
complicated and contain additional constructs, but their structure will be very similar. List-
ing 1.1 already has most of the structural elements of a C program.

There are two categories of aspects to consider in a C program: syntactical aspects
(how do we specify the program so the compiler understands it?) and semantic aspects
(what do we specify so that the program does what we want it to do?). In the follow-
ing subsections, we will introduce the syntactical aspects (grammar) and three different
semantic aspects: declarative parts (what things are), definitions of objects (where things
are), and statements (what things are supposed to do).

2.1. Grammar. Looking at its overall structure, we can see that a C program is com-
posed of different types of text elements that are assembled in a kind of grammar. These
elements are:

Special words: In listing 1.1, we used the following special words:8 #include, int, void,
double, for, and return. In program text in this book, they will usually be printed
in bold face. These special words represent concepts and features that the C language
imposes and that cannot be changed.

PunctuationC: C uses several types of punctuation to structure the program text.
• There are five kinds of brackets: { ... }, (...), [...], /* ... */, and
< ... >. Brackets group certain parts of the program together and should always
come in pairs. Fortunately, the < ... > brackets are rare in C and are only used
as shown in our example, on the same logical line of text. The other four are not
limited to a single line; their contents might span several lines, as they did when we
used printf earlier.

• There are two different separators or terminators: comma and semicolon. When we
used printf, we saw that commas separated the four arguments of that function;
and on line 12 we saw that a comma also can follow the last element of a list of
elements.

. getting-started.c

12 [3] = .00007 ,

One of the difficulties for newcomers in C is that the same punctuation characters are
used to express different concepts. For example, the pairs {} and [] are each used for
three different purposes in listing 1.1.[Exs 9]

Takeaway 0.2.1.1 Punctuation characters can be used with several different meanings.

CommentsC: The construct /* ... */ that we saw earlier tells the compiler that every-
thing inside it is a comment; see, for example, line 5:

8In C jargon, these are directivesC , keywordsC , and reservedC identifiers.
[Exs 9]Find these different uses of these two sorts of brackets.

2. THE PRINCIPAL STRUCTURE OF A PROGRAM 9

. getting-started.c

5 /* The main thing that this program does. */

Comments are ignored by the compiler. It is the perfect place to explain
and document your code. Such in-place documentation can (and should) greatly
improve the readability and comprehensibility of your code. Another form of
comment is the so-called C++-style comment, as on line 15. These are marked
with //. C++-style comments extend from the // to the end of the line.

LiteralsC: Our program contains several items that refer to fixed values that are part of the
program: 0, 1, 3, 4, 5, 9.0, 2.9, 3.E+25, .00007, and
"element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n". These are called literalsC .

IdentifiersC: These are “names” that we (or the C standard) give to certain entities in
the program. Here we have A, i, main, printf, size_t, and EXIT_SUCCESS.
Identifiers can play different roles in a program. Among other things, they may
refer to
• Data objectsC (such as A and i). These are also referred to as variablesC .
• TypeC aliases, such as size_t, that specify the “sort” of a new object, here

of i. Observe the trailing _t in the name. This naming convention is used
by the C standard to remind you that the identifier refers to a type.

• Functions, such as main and printf.
• Constants, such as EXIT_SUCCESS.

FunctionsC: Two of the identifiers refer to functions: main and printf. As we have al-
ready seen, printf is used by the program to produce some output. The function
main in turn is definedC : that is, its declarationC int main(void) is followed
by a blockC enclosed in { ... } that describes what that function is supposed
to do. In our example, this function definitionC goes from line 6 to 24. main has
a special role in C programs, as we will encounter: it must always be present,
since it is the starting point of the program’s execution.

OperatorsC: Of the numerous C operators, our program only uses a few:
• = for initializationC and assignmentC ,
• < for comparison,
• ++ to increment a variable (to increase its value by 1), and
• * to multiply two values.

Just as in natural languages, the lexical elements and the grammar of C programs that
we have seen here have to be distinguished from the actual meaning these constructs con-
vey. In contrast to natural languages, though, this meaning is rigidly specified and usually
leaves no room for ambiguity. In the following subsections, we will dig into the three main
semantic categories that C distinguishes: declarations, definitions, and statements.

2.2. Declarations. Before we may use a particular identifier in a program, we have to
give the compiler a declarationC that specifies what that identifier is supposed to represent.
This is where identifiers differ from keywords: keywords are predefined by the language
and must not be declared or redefined.

Takeaway 0.2.2.1 All identifiers in a program have to be declared.

Three of the identifiers we use are effectively declared in our program: main, A, and
i. Later on, we will see where the other identifiers (printf, size_t, and EXIT_SUCCESS)
come from. We already mentioned the declaration of the main function. All three declara-
tions, in isolation as “declarations only,” look like this:

int main(void);
double A[5];
size_t i;

10 0. ENCOUNTER

These three follow a pattern. Each has an identifier (main, A, or i) and a specification
of certain properties that are associated with that identifier:

• i is of typeC size_t.

• main is additionally followed by parentheses, (...), and thus declares a function of
type int.

• A is followed by brackets, [...], and thus declares an arrayC . An array is an aggre-
gate of several items of the same type; here it consists of 5 items of type double. These
5 items are ordered and can be referred to by numbers, called indicesC , from 0 to 4.

Each of these declarations starts with a typeC , here int, double, and size_t. We will
see later what that represents. For the moment, it is sufficient to know that this specifies
that all three identifiers, when used in the context of a statement, will act as some sort of
“numbers.”

The declarations of i and A declare variablesC , which are named items that allow us
to store valuesC . They are best visualized as a kind of box that may contain a “something”
of a particular type:

i size_t ??

A

[0]

double ??

[1]

double ??

[2]

double ??

[3]

double ??

[4]

double ??

Conceptually, it is important to distinguish the box itself (the object), the specification (its
type), the box contents (its value), and the name or label that is written on the box (the
identifier). In such diagrams, we put ?? if we don’t know the actual value of an item.

For the other three identifiers, printf, size_t, and EXIT_SUCCESS, we don’t see any
declaration. In fact, they are predeclared identifiers, but as we saw when we tried to com-
pile listing 1.2, the information about these identifiers doesn’t come out of nowhere. We
have to tell the compiler where it can obtain information about them. This is done right
at the start of the program, in lines 2 and 3: printf is provided by stdio.h, whereas<stdio.h>

size_t and EXIT_SUCCESS come from stdlib.h. The real declarations of these identi-<stdlib.h>

fiers are specified in .h files with these names somewhere on your computer. They could
be something like:

int printf(char const format[static 1], ...);
typedef unsigned long size_t;
#define EXIT_SUCCESS 0

Because the specifics of these predeclared features are of minor importance, this infor-
mation is normally hidden from you in these include filesC or header filesC . If you need
to know their semantics, it is usually a bad idea to look them up in the corresponding files,
as these tend to be barely readable. Instead, search in the documentation that comes with
your platform. For the brave, I always recommend a look into the current C standard, as
that is where they all come from. For the less courageous, the following commands may
help:

2. THE PRINCIPAL STRUCTURE OF A PROGRAM 11

Terminal

0 > apropos printf

1 > man printf

2 > man 3 printf

A declaration only describes a feature but does not create it, so repeating a declaration
does not do much harm but adds redundancy.

Takeaway 0.2.2.2 Identifiers may have several consistent declarations.

Clearly, it would become really confusing (for us or the compiler) if there were sev-
eral contradicting declarations for the same identifier in the same part of the program, so
generally this is not allowed. C is quite specific about what “the same part of the program”
is supposed to mean: the scopeC is a part of the program where an identifier is visibleC .

Takeaway 0.2.2.3 Declarations are bound to the scope in which they appear.

These scopes of identifiers are unambiguously described by the grammar. In list-
ing 1.1, we have declarations in different scopes:

• A is visible inside the definition of main, starting at its declaration on line 8 and
ending at the closing } on line 24 of the innermost { ... } block that contains
that declaration.

• i has more restricted visibility. It is bound to the for construct in which it is
declared. Its visibility reaches from that declaration on line 16 to the end of the
{ ... } block that is associated with the for on line 21.

• main is not enclosed in a { ... } block, so it is visible from its declaration
onward until the end of the file.

In a slight abuse of terminology, the first two types of scope are called block scopeC ,
because the scope is limited by a blockC of matching { ... }. The third type, as used for
main, which is not inside a { ... } pair, is called file scopeC . Identifiers in file scope are
often referred to as globals.

2.3. Definitions. Generally, declarations only specify the kind of object an identifier
refers to, not what the concrete value of an identifier is, nor where the object it refers to
can be found. This important role is filled by a definitionC .

Takeaway 0.2.3.1 Declarations specify identifiers, whereas definitions specify objects.

We will later see that things are a little more complicated in real life, but for now we
can make the simplification that we will always initialize our variables. An initialization
is a grammatical construct that augments a declaration and provides an initial value for the
object. For instance,

size_t i = 0;

is a declaration of i such that the initial value is 0.
In C, such a declaration with an initializer also defines the object with the correspond-

ing name: that is, it instructs the compiler to provide storage in which the value of the
variable can be stored.

Takeaway 0.2.3.2 An object is defined at the same time it is initialized.

Our box visualization can now be completed with a value, 0 in this example:

12 0. ENCOUNTER

i size_t 0

A is a bit more complex because it has several components:

. getting-started.c

8 double A[5] = {
9 [0] = 9.0,

10 [1] = 2.9,
11 [4] = 3.E+25,
12 [3] = .00007 ,
13 };

This initializes the 5 items in A to the values 9.0, 2.9, 0.0, 0.00007, and 3.0E+25, in
that order:

A

[0]

double 9.0

[1]

double 2.9

[2]

double 0.0

[3]

double 0.00007

[4]

double 3.0E+25

The form of an initializer that we see here is called designatedC : a pair of brackets
with an integer designate which item of the array is initialized with the corresponding
value. For example, [4] = 3.E+25 sets the last item of the array A to the value 3.E+25.
As a special rule, any position that is not listed in the initializer is set to 0. In our example,
the missing [2] is filled with 0.0.10

Takeaway 0.2.3.3 Missing elements in initializers default to 0.

You might have noticed that array positions, indicesC , do not start with 1 for the first
element, but with 0. Think of an array position as the distance of the corresponding array
element from the start of the array.

Takeaway 0.2.3.4 For an array with n elements, the first element has index 0, and the
last has index n-1.

For a function, we have a definition (as opposed to only a declaration) if its declaration
is followed by braces { ... } containing the code of the function:

int main(void) {
...

}

In our examples so far, we have seen names for two different features: objectsC , i
and A, and functionsC , main and printf. In contrast to object or function declarations,
where several are allowed for the same identifier, definitions of objects or functions must
be unique. That is, for a C program to be operational, any object or function that is used
must have a definition (otherwise the execution would not know where to look for them),
and there must be no more than one definition (otherwise the execution could become
inconsistent).

Takeaway 0.2.3.5 Each object or function must have exactly one definition.

10We will see later how these number literals with dots (.) and exponents (E+25) work.

2. THE PRINCIPAL STRUCTURE OF A PROGRAM 13

2.4. Statements. The second part of the main function consists primarily of state-
ments. Statements are instructions that tell the compiler what to do with identifiers that
have been declared so far. We have

. getting-started.c

16 for (size_t i = 0; i < 5; ++i) {
17 printf("element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n",
18 i,
19 A[i],
20 A[i]*A[i]);
21 }
22
23 return EXIT_SUCCESS;

We have already discussed the lines that correspond to the call to printf. There are
also other types of statements: for and return statements, and an increment operation,
indicated by the operatorC ++. In the following subsection, we will go a bit into the details
of three categories of statements: iterations (do something several times), function calls
(delegate execution somewhere else), and function returns (resume execution from where
a function was called).

2.4.1. Iteration. The for statement tells the compiler that the program should execute
the printf line a number of times. This is the simplest form of domain iterationC that C
has to offer. It has four different parts.

The code that is to be repeated is called the loop bodyC : it is the { ... } block that
follows the for (...). The other three parts are those inside the (...) part, divided
by semicolons:

(1) The declaration, definition, and initialization of the loop variableC i, which we
already discussed. This initialization is executed once before any of the rest of
the entire for statement.

(2) A loop conditionC , i < 5 specifies how long the for iteration should continue.
This tells the compiler to continue iterating as long as i is strictly less than 5.
The loop condition is checked before each execution of the loop body.

(3) Another statement, ++i, is executed after each iteration. In this case, it increases
the value of i by 1 each time.

If we put all of these together, we ask the program to perform the part in the block five
times, setting the value of i to 0, 1, 2, 3, and 4, respectively, in each iteration. The fact
that we can identify each iteration with a specific value for i makes this an iteration over
the domainC 0, . . . , 4. There is more than one way to do this in C, but for is the easiest,
cleanest, and best tool for the task.

Takeaway 0.2.4.1 Domain iterations should be coded with a for statement.

A for statement can be written in several ways other than what we just saw. Often,
people place the definition of the loop variable somewhere before the for or even reuse
the same variable for several loops. Don’t do that: to help an occasional reader and the
compiler understand your code, it is important to know that this variable has the special
meaning of an iteration counter for that given for loop.

Takeaway 0.2.4.2 The loop variable should be defined in the initial part of a for.

2.4.2. Function calls. Function calls are special statements that suspend the execu-
tion of the current function (at the beginning, this is usually main) and then hand over
control to the named function. In our example

14 0. ENCOUNTER

. getting-started.c

17 printf("element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n",
18 i,
19 A[i],
20 A[i]*A[i]);

the called function is printf. A function call usually provides more than just the
name of the function, but also arguments. Here, these are the long chain of characters, i,
A[i], and A[i]*A[i]. The values of these arguments are passed over to the function. In
this case, these values are the information that is printed by printf. The emphasis here
is on “value”: although i is an argument, printf will never be able to change i itself.
Such a mechanism is called call by value. Other programming languages also have call by
reference, a mechanism where the called function can change the value of a variable. C
does not implement pass by reference, but it has another mechanism to pass the control of
a variable to another function: by taking addresses and transmitting pointers. We will see
these mechanism much later.

2.4.3. Function return. The last statement in main is a return. It tells the main func-
tion to return to the statement that it was called from once it’s done. Here, since main has
int in its declaration, a return must send back a value of type int to the calling statement.
In this case, that value is EXIT_SUCCESS.

Even though we can’t see its definition, the printf function must contain a similar
return statement. At the point where we call the function on line 17, execution of the
statements in main is temporarily suspended. Execution continues in the printf function
until a return is encountered. After the return from printf, execution of the statements
in main continues from where it stopped.

int main (void) {
// Declarations
double A [5] = {

[0] = 9 . 0 ,
[1] = 2 . 9 ,
[4] = 3 . E+25 ,
[3] = . 0 0 0 0 7 ,

} ;

// Doing some work
for (size_t i = 0 ; i < 5 ; ++i) {

printf ("element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n" ,
i ,
A [i] ,
A [i]* A [i]) ;

}

return EXIT_SUCCESS ;
}

int printf(char const fmt[], ...) {

return something;

}

P
ro

ce
ss

st
ar

tu
p C

library

Progam code

Call

C
al

l

main();

Return

Return

FIGURE 2.1. Execution of a small program

Figure 2.1 shows a schematic view of the execution of our little program: its control
flow. First, a process-startup routine (on the left) that is provided by our platform calls the
user-provided function main (middle). That, in turn, calls printf, a function that is part
of the C libraryC , on the right. Once a return is encountered there, control returns back
to main; and when we reach the return in main, it passes back to the startup routine. The

SUMMARY 15

latter transfer of control, from a programmer’s point of view, is the end of the program’s
execution.

Summary

• C distinguishes the lexical structure (the punctuators, identifiers, and numbers),
the grammatical structure (syntax), and the semantics (meaning) of programs.

• All identifiers (names) must be declared such that we know the properties of the
concept they represent.

• All objects (things that we deal with) and functions (methods that we use to deal
with things) must be defined; that is, we must specify how and where they come
to be.

• Statements indicate how things are going to be done: iterations (for) repeat
variations of a certain tasks, functions calls (printf(...)) delegate a task to a
function, and function returns (return something;) go back where we came
from.

LEVEL 1

Acquaintance

Our mascot for this level, the common raven, is a very sociable corvid
and known for its problem-solving capacity. Ravens organize in teams
and have been observed playing even as adults.

This level will acquaint you with the C programming language: that is, it will provide
you with enough knowledge to write and use good C programs. “Good” here refers to a
modern understanding of the language, avoiding most of the pitfalls of early dialects of C,
and offering you some constructs that were not present before and that are portable across
the vast majority of modern computer architectures, from your cell phone to a mainframe
computer. Having worked through these sections, you should be able to write short code
for everyday needs: not extremely sophisticated, but useful and portable.

17

18 1. ACQUAINTANCE

Buckle up

In many ways, C is a permissive language; programmers are allowed to shoot them-
selves in the foot or other body parts if they choose to, and C will make no effort to stop
them. Therefore, just for the moment, we will introduce some restrictions. We’ll try to
avoid handing out guns in this level, and place the key to the gun safe out of your reach for
the moment, marking its location with big and visible exclamation marks.

The most dangerous constructs in C are the so-called castsC , so we’ll skip them at this
level. However, there are many other pitfalls that are less easy to avoid. We will approach
some of them in a way that might look unfamiliar to you, in particular if you learned your
C basics in the last millennium or if you were introduced to C on a platform that wasn’t
upgraded to current ISO C for years.

Experienced C programmers: If you already have some experience with C program-
ming, what follows may take some getting used to or even provoke allergic reac-
tions. If you happen to break out in spots when you read some of the code here,
take a deep breath and try to relax, but please do not skip these pages.

Inexperienced C programmers: If you are not an experienced C programmer, much of
the following discussion may be a bit over your head: for example, we may use
terminology that you have not yet even heard of. If so, this is a digression for
you, and you may skip to the start of section 3 and come back later when you
feel a bit more comfortable. But be sure to do so before the end of this level.

Some of “getting used to” our approach on this level may concern the emphasis and order-
ing in which we present the material:

• We will focus primarily on the unsignedC versions of integer types.
• We will introduce pointers in steps: first, in disguise as parameters to functions

(section 6.1.4), then with their state (being valid or not, section 6.2), and then,
on the next level, (section 11), using their entire potential.

• We will focus on the use of arrays whenever possible, instead.
You might also be surprised by some style considerations that we will discuss in the fol-
lowing points. On the next level, we will dedicate an entire section (section 9) to these
questions, so please be patient and accept them for the moment as they are.

(1) We bind type modifiers and qualifiers to the left.: We want to separate identifiers vi-
sually from their type. So we will typically write things as

char* name;

where char* is the type and name is the identifier. We also apply the left-binding rule to
qualifiers and write

char const* const path_name;

Here the first const qualifies the char to its left, the * makes it to a pointer, and the second
const again qualifies what is to its left.

(2) We do not use continued declarations.: They obfuscate the bindings of type declara-
tors. For example:

unsigned const*const a, b;

Here, b has type unsigned const: that is, the first const goes to the type, and the
second const only goes to the declaration of a. Such rules are highly confusing, and you
have more important things to learn.

BUCKLE UP 19

(3) We use array notation for pointer parameters.: We do so wherever these assume
that the pointer can’t be null. Examples:

/* These emphasize that the arguments cannot be null. */
size_t strlen(char const string[static 1]);
int main(int argc , char* argv[argc +1]);
/* Compatible declarations for the same functions. */
size_t strlen(const char *string);
int main(int argc , char **argv);

The first stresses the fact that strlen must receive a valid (non-null) pointer and will access
at least one element of string. The second summarizes the fact that main receives an array
of pointers to char: the program name, argc-1 program arguments, and one null pointer
that terminates the array.

Note that the previous code is valid as it stands. The second set of declarations only
adds additional equivalent declarations for features that are already known to the compiler.

(4) We use function notation for function pointer parameters.: Along the same lines,
we do so whenever we know that a function pointer can’t be null:

/* This emphasizes that the ˋˋhandler '' argument cannot be null. */
int atexit(void handler(void));
/* Compatible declaration for the same function. */
int atexit(void (* handler)(void));

Here, the first declaration of atexit emphasizes that, semantically, it receives a function
named handler as an argument and that a null function pointer is not allowed. Techni-
cally, the function parameter handler is “rewritten” to a function pointer much as array
parameters are rewritten to object pointers, but this is of minor interest for a description of
the functionality.

Note, again, that the previous code is valid as it stands and that the second declaration
just adds an equivalent declaration for atexit.

(5) We define variables as close to their first use as possible.: Lack of variable initial-
ization, especially for pointers, is one of the major pitfalls for novice C programmers.
This is why we should, whenever possible, combine the declaration of a variable with the
first assignment to it: the tool that C gives us for this purpose is the definition: a declaration
together with an initialization. This gives a name to a value and introduces this name at the
first place where it is used.

This is particularly convenient for for loops. The iterator variable of one loop is
semantically a different object from that in another loop, so we declare the variable within
the for to ensure it stays within the loop’s scope.

(6) We use prefix notation for code blocks.: To be able to read a code block, it is impor-
tant to capture two things about it easily: its purpose and its extent. Therefore:
• All { are prefixed on the same line with the statement or declaration that introduces

them.
• The code inside is indented by one level.
• The terminating } starts a new line on the same level as the statement that introduced

the block.
• Block statements that have a continuation after the } continue on the same line.

Examples:

20 1. ACQUAINTANCE

int main(int argc , char* argv[argc +1]) {
puts("Hello␣world!");
if (argc > 1) {

while (true) {
puts("some␣programs␣never␣stop");

}
} else {

do {
puts("but␣this␣one␣does");

} while (false);
}
return EXIT_SUCCESS;

}

3. EVERYTHING IS ABOUT CONTROL 21

3. Everything is about control

This section covers
• Conditional execution with if
• Iterating over domains
• Making multiple selections

In our introductory example, listing 1.1, we saw two different constructs that allowed
us to control the flow of a program’s execution: functions and the for iteration. Functions
are a way to transfer control unconditionally. The call transfers control unconditionally to
the function, and a return statement unconditionally transfers it back to the caller. We
will come back to functions in section 7.

The for statement is different in that it has a controlling condition (i < 5 in the ex-
ample) that regulates if and when the dependent block or statement ({ printf(...) })
is executed. C has five conditional control statements: if, for, do, while, and switch.
We will look at these statements in this section: if introduces a conditional execution de-
pending on a Boolean expression; for, do, and while are different forms of iterations; and
switch is a multiple selection based on an integer value.

C has some other conditionals that we will discuss later: the ternary operatorC , de-
noted by an expression in the form cond ? A : B (section 4.4), the compile-time pre-
processor conditionals #if/#ifdef/#ifndef/#elif/#else/#endif (section 8.1.5), and
type generic expressions denoted with the keyword _Generic (section 16.6).

3.1. Conditional execution. The first construct that we will look at is specified by
the keyword if. It looks like this:

if (i > 25) {
j = i - 25;

}

Here we compare i against the value 25. If it is larger than 25, j is set to the value i - 25.
In the example, i > 25 is called the controlling expressionC , and the part in { ... } is
called the dependent blockC .

On the surface, this form of an if statement resembles the for statement that we
already encountered. But it works differently than that: there is only one part inside the
parentheses, and that determines whether the dependent statement or block is run once or
not at all.

There is a more general form of the if construct:

if (i > 25) {
j = i - 25;

} else {
j = i;

}

It has a second dependent statement or block that is executed if the controlling condi-
tion is not fulfilled. Syntactically, this is done by introducing another keyword else that
separates the two statements or blocks.

The if (...) ... else ... is a selection statementC . It selects one of the two
possible code pathsC according to the contents of (...). The general form is

if (condition) statement0-or-block0
else statement1-or-block1

The possibilities for condition (the controlling expression) are numerous. They can
range from simple comparisons, as in this example, to very complex nested expressions.
We will present all the primitives that can be used in section 4.3.2.

22 1. ACQUAINTANCE

The simplest of such condition specifications in an if statement can be seen in the
following example, in a variation of the for loop from listing 1.1:

for (size_t i = 0; i < 5; ++i) {
if (i) {

printf("element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n",
i,
A[i],
A[i]*A[i]);

}
}

Here the condition that determines whether printf is executed is just i: a numerical
value by itself can be interpreted as a condition. The text will only be printed when the
value of i is not 0.[Exs 1]

There are two simple rules for the evaluation of a numerical condition:

Takeaway 1.3.1.1 The value 0 represents logical false.

Takeaway 1.3.1.2 Any value different from 0 represents logical true.

The operators == and != allow us to test for equality and inequality, respectively.
a == b is true if the value of a is equal to the value of b, and false otherwise; a != b is
false if a is equal to b, and true otherwise. Knowing how numerical values are evaluated
as conditions, we can avoid redundancy. For example, we can rewrite

if (i != 0) {
...

}

as:

if (i) {
...

}

Which of these two versions is more readable is a question of coding styleC and can be
subject to fruitless debates. While the first might be easier for occasional readers of C code
to read, the latter is often preferred in projects that assume some knowledge about C’s type
system.

The type bool, specified in stdbool.h, is what we should be using if we want to store<stdbool.h>

truth values. Its values are false and true. Technically, false is just another name for 0
and true for 1. It’s important to use false and true (and not the numbers) to emphasize
that a value is to be interpreted as a condition. We will learn more about the bool type in
section 5.7.4.

Redundant comparisons quickly become unreadable and clutter your code. If you have
a conditional that depends on a truth value, use that truth value directly as the condition.
Again, we can avoid redundancy by rewriting something like

bool b = ...;
...
if ((b != false) == true) {

...
}

as

[Exs 1]Add the if (i) condition to the program, and compare the output to the previous.

3. EVERYTHING IS ABOUT CONTROL 23

bool b = ...;
...
if (b) {

...
}

Generally:

Takeaway 1.3.1.3 Don’t compare to 0, false, or true.

Using the truth value directly makes your code clearer and illustrates one of the basic
concepts of the C language:

Takeaway 1.3.1.4 All scalars have a truth value.

Here, scalarC types include all the numerical types such as size_t, bool, and int that
we already encountered, and pointerC types; see table 3.1 for the types that are frequently
used in this book. We will come back to them in section 6.2.

TABLE 3.1. Scalar types used in this book

Level Name Other Category Where printf
0 size_t Unsigned <stddef.h> "%zu" "%zx"
0 double Floating Built in "%e" "%f" "%g" "%a"
0 signed int Signed Built in "%d"
0 unsigned Unsigned Built in "%u" "%x"
0 bool _Bool Unsigned <stdbool.h> "%d" as 0 or 1
1 ptrdiff_t Signed <stddef.h> "%td"
1 char const* String Built in "%s"
1 char Character Built in "%c"
1 void* Pointer Built in "%p"

2 unsigned char Unsigned Built in "%hhu" "%02hhx"

3.2. Iterations. Previously, we encountered the for statement to iterate over a do-
main; in our introductory example, it declared a variable i that was set to the values 0, 1,
2, 3, and 4. The general form of this statement is

for (clause1; condition2; expression3) statement-or-block

This statement is actually quite generic. Usually, clause1 is an assignment expres-
sion or a variable definition. It serves to state an initial value for the iteration domain.
condition2 tests whether the iteration should continue. Then, expression3 updates the
iteration variable used in clause1. It is performed at the end of each iteration. Some
advice:

• Because we want iteration variables to be defined narrowly in the context for a
for loop (cf. Takeaway 0.2.4.2), clause1 should in most cases be a variable
definition.

• Because for is relatively complex with its four different parts and not easy to
capture visually, statement-or-block should usually be a { ... } block.

Let’s see some more examples:

for (size_t i = 10; i; --i) {
something(i);

}
for (size_t i = 0, stop = upper_bound (); i < stop; ++i) {

something_else(i);

24 1. ACQUAINTANCE

}
for (size_t i = 9; i <= 9; --i) {

something_else(i);
}

The first for counts i down from 10 to 1, inclusive. The condition is again just the
evaluation of the variable i; no redundant test against value 0 is required. When i becomes
0, it will evaluate to false, and the loop will stop. The second for declares two variables,
i and stop. As before, i is the loop variable, stop is what we compare against in the
condition, and when i becomes greater than or equal to stop, the loop terminates.

The third for looks as though it would go on forever, but actually it counts down from
9 to 0. In fact, in the next section, we will see that “sizes” in C (numbers that have type
size_t) are never negative.[Exs 2]

Observe that all three for statements declare variables named i. These three variables
with the same name happily live side by side, as long as their scopes don’t overlap.

There are two more iterative statements in C, while and do:

while (condition) statement-or-block
do statement-or-block while(condition);

The following example shows a typical use of the first. It implements the so-called
Heron approximation to compute the multiplicative inverse 1

x of a number x.

#include <tgmath.h>

double const eps = 1E-9; // Desired precision
...
double const a = 34.0;
double x = 0.5;
while (fabs (1.0 - a*x) >= eps) { // Iterates until close

x *= (2.0 - a*x); // Heron approximation
}

It iterates as long as the given condition evaluates true. The do loop is very similar,
except that it checks the condition after the dependent block:

do { // Iterates
x *= (2.0 - a*x); // Heron approximation

} while (fabs (1.0 - a*x) >= eps); // Iterates until close

This means if the condition evaluates to false, a while loop will not run its dependent block
at all, and a do loop will run it once before terminating.

As with the for statement, with do and while it is advisable to use the { ... } block
variants. There is also a subtle syntactical difference between the two: do always needs a
semicolon ; after the while (condition) to terminate the statement. Later, we will see
that this is a syntactic feature that turns out to be quite useful in the context of multiple
nested statements; see section 10.2.1.

All three iteration statements become even more flexible with break and continue
statements. A break statement stops the loop without reevaluating the termination condi-
tion or executing the part of the dependent block after the break statement:

while (true) {
double prod = a*x;
if (fabs (1.0 - prod) < eps) { // Stops if close enough

break;
}
x *= (2.0 - prod); // Heron approximation

[Exs 2]Try to imagine what happens when i has value 0 and is decremented by means of the operator --.

3. EVERYTHING IS ABOUT CONTROL 25

}

This way, we can separate the computation of the product a*x, the evaluation of the
stop condition, and the update of x. The condition of the while then becomes trivial. The
same thing can be done using a for, and there is a tradition among C programmers to write
it as follows:

for (;;) {
double prod = a*x;
if (fabs (1.0 - prod) < eps) { // Stops if close enough

break;
}
x *= (2.0 - prod); // Heron approximation

}

for(;;) here is equivalent to while(true). The fact that the controlling expression of a
for (the middle part between the ;;) can be omitted and is interpreted as “always true” is
just a historical artifact in the rules of C and has no other special purpose.

The continue statement is less frequently used. Like break, it skips the execution of
the rest of the dependent block, so all statements in the block after the continue are not
executed for the current iteration. However, it then reevaluates the condition and continues
from the start of the dependent block if the condition is true:

for (size_t i =0; i < max_iterations; ++i) {
if (x > 1.0) { // Checks if we are on the correct side of 1

x = 1.0/x;
continue;

}
double prod = a*x;
if (fabs (1.0 - prod) < eps) { // Stops if close enough

break;
}
x *= (2.0 - prod); // Heron approximation

}

In these examples, we use a standard macro fabs, which comes with the tgmath.h <tgmath.h>

header3. It calculates the absolute value of a double. Listing 3.1 is a complete program
that implements the same algorithm, where fabs has been replaced by several explicit
comparisons against certain fixed numbers: for example, eps1m24 defined to be 1− 2−24,
or eps1p24 as 1 + 2−24. We will see later (section 5.3) how the constants 0x1P-24 and
similar used in these definitions work.

In the first phase, the product of the current number under investigation a with the
current estimate x is compared to 1.5 and 0.5, and then x is multiplied by 0.5 or 2 until
the product is close to 1. Then, the Heron approximation as shown in the code is used in a
second iteration to close in and to compute the multiplicative inverse with high accuracy.

The overall task of the program is to compute the inverse of all numbers that are
provided to it on the command line. An example of a program execution looks like this:

Terminal

0 > ./heron 0.07 5 6E+23

1 heron: a=7.00000e-02, x=1.42857e+01, a*x=0.999999999996

2 heron: a=5.00000e+00, x=2.00000e-01, a*x=0.999999999767

3 heron: a=6.00000e+23, x=1.66667e-24, a*x=0.999999997028

3“tgmath” stands for type generic mathematical functions.

26 1. ACQUAINTANCE

To process the numbers on the command line, the program uses another library function
strtod from stdlib.h.[Exs 4][Exs 5][Exs 6]

<stdlib.h>

CHALLENGE 1 (Sequential sorting algorithms). Can you do
(1) A merge sort (with recursion)
(2) A quick sort (with recursion)

on arrays with sort keys such as double or strings to your liking?
Nothing is gained if you don’t know whether your programs are correct. Therefore, can
you provide a simple test routine that checks if the resulting array really is sorted?
This test routine should just scan once through the array and should be much, much faster
than your sorting algorithms.

LISTING 3.1. Computing multiplicative inverses of numbers
1 #include <stdlib.h>
2 #include <stdio.h>
3
4 /* lower and upper iteration limits centered around 1.0 */
5 static double const eps1m01 = 1.0 - 0x1P-01;
6 static double const eps1p01 = 1.0 + 0x1P-01;
7 static double const eps1m24 = 1.0 - 0x1P-24;
8 static double const eps1p24 = 1.0 + 0x1P-24;
9

10 int main(int argc , char* argv[argc +1]) {
11 for (int i = 1; i < argc; ++i) { // process args
12 double const a = strtod(argv[i], 0); // arg -> double
13 double x = 1.0;
14 for (;;) { // by powers of 2
15 double prod = a*x;
16 if (prod < eps1m01) {
17 x *= 2.0;
18 } else if (eps1p01 < prod) {
19 x *= 0.5;
20 } else {
21 break;
22 }
23 }
24 for (;;) { // Heron approximation
25 double prod = a*x;
26 if ((prod < eps1m24) || (eps1p24 < prod)) {
27 x *= (2.0 - prod);
28 } else {
29 break;
30 }
31 }
32 printf("heron:␣a=%.5e,\tx=%.5e,\ta*x=%.12f\n",
33 a, x, a*x);
34 }
35 return EXIT_SUCCESS;
36 }

[Exs 4]Analyze listing 3.1 by adding printf calls for intermediate values of x.
[Exs 5]Describe the use of the parameters argc and argv in listing 3.1.
[Exs 6]Print out the values of eps1m01, and observe the output when you change them slightly.

3. EVERYTHING IS ABOUT CONTROL 27

3.3. Multiple selection. The last control statement that C has to offer is the switch
statement and is another selectionC statement. It is mainly used when cascades of if-else
constructs would be too tedious:

if (arg == 'm') {
puts("this␣is␣a␣magpie");

} else if (arg == 'r') {
puts("this␣is␣a␣raven");

} else if (arg == 'j') {
puts("this␣is␣a␣jay");

} else if (arg == 'c') {
puts("this␣is␣a␣chough");

} else {
puts("this␣is␣an␣unknown␣corvid");

}

In this case, we have a choice that is more complex than a false-true decision and that
can have several outcomes. We can simplify this as follows:

switch (arg) {
case 'm': puts("this␣is␣a␣magpie");

break;
case 'r': puts("this␣is␣a␣raven");

break;
case 'j': puts("this␣is␣a␣jay");

break;
case 'c': puts("this␣is␣a␣chough");

break;
default: puts("this␣is␣an␣unknown␣corvid");

}

Here we select one of the puts calls according to the value of the arg variable. Like
printf, the function puts is provided by stdio.h. It outputs a line with the string that <stdio.h>

is passed as an argument. We provide specific cases for characters 'm', 'r', 'j', 'c'
and a fallbackC case labeled default. The default case is triggered if arg doesn’t match
any of the case values.[Exs 7]

Syntactically, a switch is as simple as

switch (expression) statement-or-block

and its semantics are quite straightforward: the case and default labels serve as jump
targetsC . According to the value of the expression, control continues at the statement
that is labeled accordingly. If we hit a break statement, the whole switch under which it
appears terminates, and control is transferred to the next statement after the switch.

By that specification, switch statements can be used much more widely than iterated
if-else constructs:

switch (count) {
default:puts("++++␣.....␣+++");
case 4: puts("++++");
case 3: puts("+++");
case 2: puts("++");
case 1: puts("+");
case 0:;

}

Once we have jumped into the block, execution continues until it reaches a break or the
end of the block. In this case, because there are no break statements, we end up running

[Exs 7]Test the example switch statement in a program. See what happens if you leave out some of the break
statements.

28 1. ACQUAINTANCE

all subsequent puts statements. For example, the output when the value of count is 3 is a
triangle with three lines:

Terminal

0 +++

1 ++

2 +

The structure of a switch can be more flexible than if-else, but it is restricted in
another way:

Takeaway 1.3.3.1 case values must be integer constant expressions.

In section 5.6.2, we will see what these expressions are in detail. For now, it suffices
to know that these have to be fixed values that we provide directly in the source, such as
the 4, 3, 2, 1, 0 in the previous example. In particular, variables such as count are only
allowed in the switch part, not in the individual case s.

With the greater flexibility of the switch statement also comes a price: it is more error
prone. In particular, we might accidentally skip variable definitions:

Takeaway 1.3.3.2 case labels must not jump beyond a variable definition.

CHALLENGE 2 (Numerical derivatives). Something we’ll deal with a lot is the concept of
numerical algorithms. To get your hands dirty, see if you can implement the numerical
derivative double f(double x) of a function double F(double x).
Implement this with an example F for the function that you use for this exercise. A good
primary choice for F would be a function for which you know the derivative, such as sin,
cos, or sqrt. This allows to check your results for correctness.

CHALLENGE 3 (π). Compute the N first decimal places of π?

Summary

• Numerical values can be directly used as conditions for if statements; 0 repre-
sents “false,” and all other values are “true.”

• There are three different iteration statements: for, do, and while. for is the
preferred tool for domain iterations.

• A switch statement performs multiple selection. One case runs into the next, if
it is not terminated by a break.

4. EXPRESSING COMPUTATIONS 29

4. Expressing computations

This section covers

• Performing arithmetic
• Modifying objects
• Working with booleans
• Conditional compilation with the ternary operator
• Setting the evaluation order

We’ve already made use of some simple examples of expressionsC . These are code
snippets that compute a value based on other values. The simplest such expressions are
arithmetic expressions, which are similar to those we learned in school. But there are
others, notably comparison operators such as == and !=, which we saw earlier.

In this section, the values and objects on which we will do these computations will
be mostly of the type size_t, which we have already met. Such values correspond to
“sizes,” so they are numbers that cannot be negative. Their range of possible values starts
at 0. What we would like to represent are all the non-negative integers, often denoted as
N, N0, or “natural” numbers in mathematics. Unfortunately, computers are finite, so we
can’t directly represent all the natural numbers, but we can do a reasonable approximation.
There is a big upper limit SIZE_MAX that is the upper bound of what we can represent in a
size_t.

Takeaway 1.4.0.1 The type size_t represents values in the range [0, SIZE_MAX].

The value of SIZE_MAX is quite large. Depending on the platform, it is one of

216 − 1 = 65535

232 − 1 = 4294967295

264 − 1 = 18446744073709551615

The first value is a minimal requirement; nowadays, such a small value would only occur on
some embedded platforms. The other two values are much more commonly used today: the
second is still found on some PCs and laptops, and the large majority of newer platforms
have the third. Such a choice of value is large enough for calculations that are not too
sophisticated. The standard header stdint.h provides SIZE_MAX such that you don’t have <stdint.h>

to figure out that value yourself, and such that you do not have to specialize your program
accordingly.

The concept of “numbers that cannot be negative” to which we referred for size_t
corresponds to what C calls unsigned integer typesC . Symbols and combinations like +
and != are called operatorsC , and the things to which they are applied are called operandsC ;
so, in something like a + b, + is the operator and a and b are its operands.

For an overview of all C operators, see the following tables: table 4.1 lists the operators
that operate on values, table 4.2 lists those that operate on objects, and table 4.3 lists those
that operate on types. To work with these, you may have to jump from one table to another.
For example, if you want to work out an expression such as a + 5, where a is some variable
of type unsigned, you first have to go to the third line in table 4.2 to see that a is evaluated.
Then, you can use the third line in table 4.1 to deduce that the value of a and 5 are combined
in an arithmetic operation: a +. Don’t be frustrated if you don’t understand everything in
these tables. A lot of the concepts that are mentioned have not yet been introduced; they
are listed here to form a reference for the entire book.

4.1. Arithmetic. Arithmetic operators form the first group in table 4.1 of operators
that operate on values.

30 1. ACQUAINTANCE

TABLE 4.1. Value operators: The Form column gives the syntactic form
of the operation, where @ represents the operator and a and possibly b
denote values that serve as operands. For arithmetic and bit operations,
the type of the result is a type that reconciles the types of a and b. For
some of the operators, the Nick column gives an alternative form of the
operator, or lists a combination of operators that has special meaning.
Most of the operators and terms will be discussed later.

type restriction
Operator Nick Form a b Result

a Narrow Wide Promotion
+ - a@b Pointer Integer Pointer Arithmetic

+ - * / a@b Arithmetic Arithmetic Arithmetic Arithmetic
+ - @a Arithmetic Arithmetic Arithmetic
% a@b Integer Integer Integer Arithmetic
~ compl @a Integer Integer Bit
& bitand a@b Integer Integer Integer Bit
| bitor
^ xor

<< >> a@b Integer Positive Integer Bit
== < > <= >= a@b Scalar Scalar 0,1 Comparison

!= not_eq a@b Scalar Scalar 0,1 Comparison
!!a a Scalar 0,1 Logic

!a not @a Scalar 0,1 Logic
&& || and or a@b Scalar Scalar 0,1 Logic

. a@m struct Value Member
* @a Pointer Object Reference
[] a[b] Pointer Integer Object Member
-> a@m struct Pointer Object Member
() a(b ...) Function pointer Value Call

sizeof @ a None size_t Size, ICE
_Alignof alignof @(a) None size_t Alignment, ICE

TABLE 4.2. Object operators: the Form column gives the syntactic form
of the operation, where @ represents the operator, o denotes an object, and
a denotes a suitable additional value (if any) that serves as an operand.
An additional * in the Type column requires that the object o be address-
able.

Operator Nick Form Type Result

o Array* Pointer Array decay
o Function Pointer Function decay
o Other Value Evaluation

= o@a Non-array Value Assignment

+= -= *= /= o@a Arithmetic Value Arithmetic
+= -= o@a Pointer Value Arithmetic
%= o@a Integer Value Arithmetic

++ -- @o o@ Arithmetic or pointer Value Arithmetic
&= and_eq o@a Integer Value Bit
|= or_eq
^= xor_eq

<<= >>= o@a Integer Value Bit
. o@m struct Object Member
[] o[a] Array* Object Member
& @o Any* Pointer Address

sizeof @ o Data Object, non-VLA size_t Size, ICE
sizeof @ o VLA size_t size
_Alignof alignof @(o) Non-function size_t Alignment, ICE

4. EXPRESSING COMPUTATIONS 31

TABLE 4.3. Type operators: these operators return an integer constant
(ICE) of type size_t. They have function-like syntax with the operands
in parentheses.

Operator Nick Form Type of T
sizeof sizeof(T) Any Size
_Alignof alignof _Alignof(T) Any Alignment

offsetof offsetof(T,m) struct Member offset

4.1.1. +, -, and *. The arithmetic operators +, -, and * mostly work as we would
expect by computing the sum, the difference, and the product, respectively, of two values:

size_t a = 45;
size_t b = 7;
size_t c = (a - b)*2;
size_t d = a - b*2;

Here, c must be equal to 76, and d to 31. As you can see from this little example, sub-
expressions can be grouped together with parentheses to enforce a preferred binding of the
operator.

In addition, the operators + and - have unary variants. -b gives the negative of b: a
value a such that b + a is 0. +a simply provides the value of a. The following gives 76 as
well:

size_t c = (+a + -b)*2;

Even though we use an unsigned type for our computation, negation and difference
by means of the operator - are well definedC . That is, regardless of the values we feed
into such a subtraction, our computation will always have a valid result. In fact, one of the
miraculous properties of size_t is that +-* arithmetic always works where it can. As long
as the final mathematical result is within the range [0, SIZE_MAX], then that result will be
the value of the expression.

Takeaway 1.4.1.1 Unsigned arithmetic is always well defined.

Takeaway 1.4.1.2 The operations +, -, and * on size_t provide the mathematically
correct result if it is representable as a size_t.

When the result is not in that range and thus is not representableC as a size_t value,
we speak of arithmetic overflowC . Overflow can happen, for example, if we multiply two
values that are so large that their mathematical product is greater than SIZE_MAX. We’ll
look how C deals with overflow in the next section.

4.1.2. Division and remainder. The operators / and % are a bit more complicated,
because they correspond to integer division and the remainder operation. You might not
be as used to them as you are to the other three arithmetic operators. a/b evaluates to the
number of times b fits into a, and a%b is the remaining value once the maximum number
of b s are removed from a. The operators / and % come in pairs: if we have z = a / b,
the remainder a % b can be computed as a - z*b:

Takeaway 1.4.1.3 For unsigned values, a == (a/b)*b + (a%b).

A familiar example for the % operator is the hours on a clock. Say we have a 12-
hour clock: 6 hours after 8:00 is 2:00. Most people are able to compute time differences
on 12-hour or 24-hour clocks. This computation corresponds to a % 12: in our example,

32 1. ACQUAINTANCE

(8 + 6) % 12 == 2.[Exs 8] Another similar use for % is computation using minutes in an
hour, of the form a % 60.

There is only one value that is not allowed for these two operations: 0. Division by
zero is forbidden.

Takeaway 1.4.1.4 Unsigned / and % are well defined only if the second operand is not 0.

The % operator can also be used to explain additive and multiplicative arithmetic on
unsigned types a bit better. As already mentioned, when an unsigned type is given a value
outside its range, it is said to overflowC . In that case, the result is reduced as if the %
operator had been used. The resulting value “wraps around” the range of the type. In the
case of size_t, the range is 0 to SIZE_MAX, and therefore

Takeaway 1.4.1.5 Arithmetic on size_t implicitly does the computation %(SIZE_MAX+1).

Takeaway 1.4.1.6 In the case of overflow, unsigned arithmetic wraps around.

This means for size_t values, SIZE_MAX + 1 is equal to 0, and 0 - 1 is equal to
SIZE_MAX.

This “wrapping around” is the magic that makes the - operators work for unsigned
types. For example, the value -1 interpreted as a size_t is equal to SIZE_MAX; so adding
-1 to a value a just evaluates to a + SIZE_MAX, which wraps around to

a + SIZE_MAX - (SIZE_MAX+1) = a - 1.
The operators / and % have the nice property that their results are always smaller than or
equal to their operands:

Takeaway 1.4.1.7 The result of unsigned / and % is always smaller than the operands.

And thus

Takeaway 1.4.1.8 Unsigned / and % can’t overflow.

4.2. Operators that modify objects. Another important operation that we have al-
ready seen is assignment: a = 42. As you can see from that example, this operator is
not symmetric: it has a value on the right and an object on the left. In a freaky abuse of
language, C jargon often refers to the right side as rvalueC (right value) and to the object
on the left as lvalueC (left value). We will try to avoid that vocabulary whenever we can:
speaking of a value and an object is sufficient.

C has other assignment operators. For any binary operator @, the five we have seen all
have the syntax

an_object @= some_expression;

They are just convenient abbreviations for combining the arithmetic operator @ and
assignment; see table 4.2. A mostly equivalent form is

an_object = (an_object @ (some_expression));

In other words, there are operators +=, -=, *=, /=, and %=. For example, in a for loop,
the operator += can be used:

for (size_t i = 0; i < 25; i += 7) {
...

}

[Exs 8]Implement some computations using a 24-hour clock, such as 3 hours after 10:00 and 8 hours after 20:00.

4. EXPRESSING COMPUTATIONS 33

The syntax of these operators is a bit picky. You aren’t allowed to have blanks between
the different characters: for example, i + = 7 instead of i += 7 is a syntax error.

Takeaway 1.4.2.1 Operators must have all their characters directly attached to each
other.

We already have seen two other operators that modify objects: the increment operatorC
++ and the decrement operatorC --:

• ++i is equivalent to i += 1.
• --i is equivalent to i -= 1.

All these assignment operators are real operators. They return a value (but not an
object!): the value of the object after the modification. You could, if you were crazy
enough, write something like

a = b = c += ++d;
a = (b = (c += (++d))); // Same

But such combinations of modifications to several objects in one go is generally frowned
upon. Don’t do that unless you want to obfuscate your code. Such changes to objects that
are involved in an expression are referred to as side effectsC .

Takeaway 1.4.2.2 Side effects in value expressions are evil.

Takeaway 1.4.2.3 Never modify more than one object in a statement.

For the increment and decrement operators, there are even two other forms: postfix
incrementC and postfix decrementC . They differ from the one we have seen, in the result
they provide to the surrounding expression. The prefix versions of these operators (++a
and --a) do the operation first and then return the result, much like the corresponding
assignment operators (a+=1 and a-=1); the postfix operations return the value before the
operation and perform the modification of the object thereafter. For any of them, the effect
on the variable is the same: the incremented or decremented value.

All this shows that evaluation of expressions with side effects may be difficult to fol-
low. Don’t do it.

4.3. Boolean context. Several operators yield a value 0 or 1, depending on whether
some condition is verified; see table 4.1. They can be grouped in two categories: compar-
isons and logical evaluation.

4.3.1. Comparison. In our examples, we already have seen the comparison opera-
tors ==, !=, <, and >. Whereas the latter two perform strict comparisons between their
operands, the operators <= and >= perform “less than or equal” and “greater than or equal”
comparisons, respectively. All these operators can be used in control statements, as we
have already seen, but they are actually more powerful than that.

Takeaway 1.4.3.1 Comparison operators return the value false or true.

Remember that false and true are nothing more than fancy names for 0 and 1, re-
spectively. So, they can be used in arithmetic or for array indexing. In the following code,
c will always be 1, and d will be 1 if a and b are equal and 0 otherwise:

size_t c = (a < b) + (a == b) + (a > b);
size_t d = (a <= b) + (a >= b) - 1;

In the next example, the array element sign[false] will hold the number of values in
largeA that are greater than or equal to 1.0 and sign[true] those that are strictly less:

34 1. ACQUAINTANCE

double largeA[N] = { 0 };
...
/* Fill largeA somehow */

size_t sign [2] = { 0, 0 };
for (size_t i = 0; i < N; ++i) {

sign[(largeA[i] < 1.0)] += 1;
}

sign

[false]

size_t

[true]

size_t

Finally, there also is an identifier not_eq that may be used as a replacement for !=.
This feature is rarely used. It dates back to the times where some characters were not
properly present on all computer platforms. To be able to use it, you’d have to include the
file iso646.h .<iso646.h>

4.3.2. Logic. Logic operators operate on values that are already supposed to repre-
sent a false or true value. If they do not, the rules described for conditional execution
(Takeaway 1.3.1.1) apply first. The operator ! (not) logically negates its operand, operator
&& (and) is logical and, and operator || (or) is logical or. The results of these operators
are summarized in table 4.4.

TABLE 4.4. Logical operators

a not a
false true
true false

a and b false true
false false false
true false true

a or b false true
false false true
true true true

Similar to the comparison operators,

Takeaway 1.4.3.2 Logic operators return the value false or true.

Again, remember that these values are nothing more than 0 and 1 and can thus be used
as indices:

double largeA[N] = { 0 };
...
/* Fill largeA somehow */

size_t isset [2] = { 0, 0 };
for (size_t i = 0; i < N; ++i) {

isset [!! largeA[i]] += 1;
}

Here, the expression !!largeA[i] applies the ! operator twice and thus just ensures that
largeA[i] is evaluated as a truth value (Takeaway 1.3.1.4). As a result, the array elements
isset[0] and isset[1] will hold the number of values that are equal to 0.0 and unequal,
respectively.

isset

[false]

size_t

[true]

size_t

The operators && and || have a particular property called short-circuit evaluationC .
This barbaric term denotes the fact that the evaluation of the second operand is omitted if
it is not necessary for the result of the operation:

// This never divides by 0.
if (b != 0 && ((a/b) > 1)) {

4. EXPRESSING COMPUTATIONS 35

++x;
}

Here, the evaluation of a/b is omitted conditionally during execution, and thereby a divi-
sion by zero can never occur. Equivalent code would be

if (b) {
// This never divides by 0.
if (a/b > 1) {

++x;
}

}

4.4. The ternary or conditional operator. The ternary operator is similar to an if
statement, but it is an expression that returns the value of the chosen branch:

size_t size_min(size_t a, size_t b) {
return (a < b) ? a : b;

}

Similar to the operators && and ||, the second and third operand are evaluated only if
they are really needed. The macro sqrt from tgmath.h computes the square root of a <tgmath.h>

non-negative value. Calling it with a negative value raises a domain errorC :

#include <tgmath.h>

#ifdef __STDC_NO_COMPLEX__
error "we␣need␣complex␣arithmetic"
#endif

double complex sqrt_real(double x) {
return (x < 0) ? CMPLX(0, sqrt(-x)) : CMPLX(sqrt(x), 0);

}

In this function, sqrt is called only once, and the argument to that call is never negative.
So, sqrt_real is always well behaved; no bad values are ever passed to sqrt.

Complex arithmetic and the tools used for it require the header complex.h, which is <complex.h>

indirectly included by tgmath.h. They will be introduced later, in section 5.7.7. <tgmath.h>

In the previous example, we also see conditional compilation that is achieved with
preprocessor directivesC . The #ifdef construct ensures that we hit the #error condition
only if the macro __STDC_NO_COMPLEX__ is defined.

4.5. Evaluation order. Of the operators so far, we have seen that &&, ||, and ?:
condition the evaluation of some of their operands. This implies in particular that for these
operators, there is an evaluation order for the operands: the first operand, since it is a
condition for the remaining ones, is always evaluated first:

Takeaway 1.4.5.1 &&, ||, ?:, and , evaluate their first operand first.

The comma (,) is the only operator we haven’t introduced yet. It evaluates its operands
in order, and the result is the value of the right operand. For example, (f(a), f(b)) first
evaluates f(a) and then f(b); the result is the value of f(b).Be aware that the comma
character plays other syntactical roles in C that do not use the same convention about
evaluation. For example, the commas that separate initializations do not have the same
properties as those that separate function arguments.

The comma operator is rarely useful in clean code, and it is a trap for beginners:
A[i, j] is not a two-dimensional index for matrix A, but results in A[j].

Takeaway 1.4.5.2 Don’t use the , operator.

36 1. ACQUAINTANCE

Other operators don’t have an evaluation restriction. For example, in an expression
such as f(a)+g(b), there is no pre-established order specifying whether f(a) or g(b) is
to be computed first. If either the function f or g works with side effects (for instance, if
f modifies b behind the scenes), the outcome of the expression will depend on the chosen
order.

Takeaway 1.4.5.3 Most operators don’t sequence their operands.

That order may depend on your compiler, on the particular version of that compiler,
on compile-time options, or just on the code that surrounds the expression. Don’t rely on
any such particular sequencing: it will bite you.

The same holds for function arguments. In something like

printf("%g␣and␣%g\n", f(a), f(b));

we wouldn’t know which of the last two arguments is evaluated first.

Takeaway 1.4.5.4 Function calls don’t sequence their argument expressions.

The only reliable way not to depend on evaluation ordering of arithmetic expressions
is to ban side effects:

Takeaway 1.4.5.5 Functions that are called inside expressions should not have side ef-
fects.

Summary

• Arithmetic operators do math. They operate on values.
• Assignment operators modify objects.
• Comparison operators compare values and return 0 or 1.
• Function calls and most operators evaluate their operands in a nonspecific order.

Only &&, ||, and ?: impose an ordering on the evaluation of their operands.

SUMMARY 37

CHALLENGE 4 (Union-Find). The Union-Find problem deals with the representation of
partitions over a base set. We will identify the elements of the base set using the numbers
0, 1, ... and will represent partitions with a forest data structure where each element knows
has a “parent” that is another element inside the same partition. Each set in such a
partition is identified by a designated element called the root of the set.
We want to perform two principal operations:

• A Find operation receives one element of the ground set and returns the root of
the corresponding set.

• A Unionaoperation receives two elements and merges the two sets to which these
elements belong into one.

Can you implement a forest data structure in an index table of base type size_t called
parent? Here, a value in the table SIZE_MAX would mean a position represents a root of
one of the trees; another number represents position of the parent of the corresponding
tree. One of the important features to start the implementation is an initialization function
that makes parent the singleton partition: that is, the partition where each element is the
root of its own private set.
With this index table, can you implement a Find function that, for a given index, finds the
root of its tree?
Can you implement a FindReplace function that changes all parent entries on a path to
the root (including) to a specific value?
Can you implement a FindCompress function that changes all parent entries to the root
that has been found?
Can you implement a Union function that, for two given elements, combines their trees into
one? Use FindCompress for one side and FindReplace for the other.

aC also has a concept called a union, which we will see later, and which is completely different than the op-
eration we are currently talking about. Because union is a keyword, we use capital letters to name the operations
here.

38 1. ACQUAINTANCE

5. Basic values and data

This section covers
• Understanding the abstract state machine
• Working with types and values
• Initializing variables
• Using named constants
• Binary representations of types

We will now change our focus from “how things are to be done” (statements and ex-
pressions) to the things on which C programs operate: valuesC and dataC . A concrete
program at an instance in time has to represent values. Humans have a similar strategy:
nowadays we use a decimal presentation to write numbers on paper using the Hindu-Arabic
numeral system. But we have other systems to write numbers: for example, Roman nu-
merals (i, ii, iii, iv, and so on) or textual notation. To know that the word twelve denotes the
value 12 is a nontrivial step and reminds us that European languages denote numbers not
only in decimal but also in other systems. English and German mix with base 12, French
with bases 16 and 20. For non-native French speakers like myself, it may be difficult to
spontaneously associate quatre vingt quinze (four times twenty and fifteen) with the value
95.

Similarly, representations of values on a computer can vary “culturally” from archi-
tecture to architecture or are determined by the type the programmer gave to the value.
Therefore, we should try to reason primarily about values and not about representations if
we want to write portable code.

If you already have some experience in C and in manipulating bytes and bits, you
will need to make an effort to actively “forget” your knowledge for most of this section.
Thinking about concrete representations of values on your computer will inhibit you more
than it helps.

Takeaway 1.5.0.1 C programs primarily reason about values and not about their repre-
sentation.

The representation that a particular value has should in most cases not be your con-
cern; the compiler is there to organize the translation back and forth between values and
representations.

In this section, we will see how the different parts of this translation are supposed to
work. The ideal world in which you will usually “argue” in your program is C’s abstract
state machine (section 5.1). It gives a vision of the execution of your program that is mostly
independent of the platform on which the program runs. The components of the state of
this machine, the objects, all have a fixed interpretation (their type) and a value that varies
in time. C’s basic types are described in subsection 5.2, followed by descriptions of how we
can express specific values for such basic types (subsection 5.3), how types are assembled
in expressions (subsection 5.4), how we can ensure that our objects initially have the de-
sired values (subsection 5.5), how we can give names to recurrent values (subsection 5.6),
and how such values are represented in the abstract state machine (subsection 5.7).

5.1. The abstract state machine. A C program can be seen as a sort of machine that
manipulates values: the particular values that variables of the program have at a given time,
and also intermediate values that are the result of computed expressions. Let us consider a
basic example:

5. BASIC VALUES AND DATA 39

double x = 5.0;
double y = 3.0;
...
x = (x * 1.5) - y;
printf("x␣is␣\%g\n", x);

Here we have two variables, x and y, that have initial values 5.0 and 3.0, respectively. The
third line computes some expressions: a subexpression

x

that evaluates x and provides the value 5.0;

(5.0 * 1.5)

that results in the value 7.5;

y

that evaluates y and provides the value 3.0;

7.5 - 3.0

that results in 4.5;

x = 4.5

that changes the value of x to 4.5;

x

that evaluates x again, but that now provides the value 4.5; and

printf("x␣is␣\%g\n", 4.5)

that outputs a text line to the terminal.
Not all operations and their resulting values are observable from within your program.

They are observable only if they are stored in addressable memory or written to an output
device. In the example, to a certain extent, the printf statement “observes” what was done
on the previous line by evaluating the variable x and then writing a string representation
of that value to the terminal. But the other subexpressions and their results (such as the
multiplication and subtraction) are not observable as such, since we never define a variable
that is supposed to hold these values.

Your C compiler is allowed to shortcut any of the steps during a process called
optimizationC only if it ensures the realization of the end results. Here, in our toy ex-
ample, there are basically two possibilities. The first is that variable x is not used later in
the program, and its acquired value is only relevant for our printf statement. In that case,
the only effect of our code snippet is the output to the terminal, and the compiler may well
(and will!) replace the whole snippet with the equivalent

printf("x␣is␣4.5\n");

That is, it will do all the computations at compile time and, the executable that is produced
will just print a fixed string. All the remaining code and even the definitions of the variables
disappear.

The other possibility is that x might be used later. Then a decent compiler would either
do something like

40 1. ACQUAINTANCE

double x = 4.5;
printf("x␣is␣4.5\n");

or maybe

printf("x␣is␣4.5\n");
double x = 4.5;

because to use x at a later point, it is not relevant whether the assignment took place before
or after the printf.

For an optimization to be valid, it is only important that a C compiler produces an
executable that reproduces the observable statesC . These consist of the contents of some
variables (and similar entities that we will see later) and the output as they evolve during
the execution of the program. This whole mechanism of change is called the abstract state
machineC .

To explain the abstract state machine, we first have to look into the concepts of a value
(what state are we in), the type (what this state represents), and the representation (how
state is distinguished). As the term abstract suggests, C’s mechanism allows different
platforms to realize the abstract state machine of a given program differently according
to their needs and capacities. This permissiveness is one of the keys to C’s potential for
optimization.

5.1.1. Values. A value in C is an abstract entity that usually exists beyond your pro-
gram, the particular implementation of that program, and the representation of the value
during a particular run of the program. As an example, the value and concept of 0 should
and will always have the same effects on all C platforms: adding that value to another value
x will again be x, and evaluating a value 0 in a control expression will always trigger the
false branch of the control statement.

So far, most of our examples of values have been some kind of numbers. This is not
an accident, but relates to one of the major concepts of C.

Takeaway 1.5.1.1 All values are numbers or translate to numbers.

This property really concerns all values a C program is about, whether these are the
characters or text we print, truth values, measures that we take, or relations that we in-
vestigate. Think of these numbers as mathematical entities that are independent of your
program and its concrete realization.

The data of a program execution consists of all the assembled values of all objects at
a given moment. The state of the program execution is determined by:

• The executable
• The current point of execution
• The data
• Outside intervention, such as IO from the user

If we abstract from the last point, an executable that runs with the same data from the
same point of execution must give the same result. But since C programs should be portable
between systems, we want more than that. We don’t want the result of a computation to
depend on the executable (which is platform specific) but ideally to depend only on the
program specification itself. An important step to achieve this platform independence is
the concept of typesC .

5.1.2. Types. A type is an additional property that C associates with values. Up to
now, we have seen several such types, most prominently size_t, but also double and
bool.

Takeaway 1.5.1.2 All values have a type that is statically determined.

5. BASIC VALUES AND DATA 41

Takeaway 1.5.1.3 Possible operations on a value are determined by its type.

Takeaway 1.5.1.4 A value’s type determines the results of all operations.

5.1.3. Binary representation and the abstract state machine. Unfortunately, the va-
riety of computer platforms is not such that the C standard can completely impose the
results of the operations on a given type. Things that are not completely specified as such
by the standard are, for example, how the sign of a signed type is represented the (sign
representation), and the precision to which a double floating-point operation is performed
(floating-point representation).9 C only imposes properties on representations such that the
results of operations can be deduced a priori from two different sources:

• The values of the operands
• Some characteristic values that describe the particular platform

For example, the operations on the type size_t can be entirely determined when inspecting
the value of SIZE_MAX in addition to the operands. We call the model to represent values
of a given type on a given platform the binary representationC of the type.

Takeaway 1.5.1.5 A type’s binary representation determines the results of all opera-
tions.

Generally, all information we need to determine that model is within reach of any C
program: the C library headers provide the necessary information through named values
(such as SIZE_MAX), operators, and function calls.

Takeaway 1.5.1.6 A type’s binary representation is observable.

This binary representation is still a model and thus an abstract representation in the
sense that it doesn’t completely determine how values are stored in the memory of a com-
puter or on a disk or other persistent storage device. That representation is the object repre-
sentation. In contrast to the binary representation, the object representation usually is not
of much concern to us, as long as we don’t want to hack together values of objects in main
memory or have to communicate between computers that have different platform models.
Much later, in section 12.1, we will see that we can even observe the object representation,
if such an object is stored in memory and we know its address.

As a consequence, all computation is fixed through the values, types, and their binary
representations that are specified in the program. The program text describes an abstract
state machineC that regulates how the program switches from one state to the next. These
transitions are determined by value, type, and binary representation only.

Takeaway 1.5.1.7 (as-if) Programs execute as if following the abstract state machine.

5.1.4. Optimization. How a concrete executable manages to follow the description of
the abstract state machine is left to the discretion of the compiler creators. Most mod-
ern C compilers produce code that doesn’t follow the exact code prescription: they cheat
wherever they can and only respect the observable states of the abstract state machine. For
example, a sequence of additions with constant values such as

x += 5;
/* Do something else without x in the meantime. */
x += 7;

9Other international standards are more restrictive about these representations. For example, the POSIX
[2009] standard enforces a particular sign representation, and ISO/IEC/IEEE 60559 [2011] normalizes floating-
point representations.

42 1. ACQUAINTANCE

may in many cases be done as if it were specified as either

/* Do something without x. */
x += 12;

or

x += 12;
/* Do something without x. */

The compiler may perform such changes to the execution order as long as there will be no
observable difference in the result: for example, as long as we don’t print the intermediate
value of x and as long as we don’t use that intermediate value in another computation.

But such an optimization can also be forbidden because the compiler can’t prove that
a certain operation will not force program termination. In our example, much depends on
the type of x. If the current value of x could be close to the upper limit of the type, the
innocent-looking operation x += 7 may produce an overflow. Such overflows are handled
differently according to the type. As we have seen, overflow of an unsigned type is not a
problem, and the result of the condensed operation will always be consistent with the two
separate ones. For other types, such as signed integer types (signed) and floating-point
types (double), an overflow may raise an exception and terminate the program. In that
case, the optimization cannot be performed.

As we have already mentioned, this allowed slackness between program description
and abstract state machine is a very valuable feature, commonly referred to as optimization.
Combined with the relative simplicity of its language description, this is actually one of
the main features that allows C to outperform other programming languages that have a lot
more knobs and whistles. An important consequence of this discussion can be summarized
as follows:

Takeaway 1.5.1.8 Type determines optimization opportunities.

5.2. Basic types. C has a series of basic types and means of constructing derived
typesC from them that we will describe later, in section 6.

Mainly for historical reasons, the system of basic types is a bit complicated, and the
syntax to specify such types is not completely straightforward. There is a first level of
specification that is done entirely with keywords of the language, such as signed, int, and
double. This first level is mainly organized according to C internals. On top of that is
a second level of specification that comes through header files, and we have already seen
examples: size_t and bool. This second level is organized by type semantics, specifying
what properties a particular type brings to the programmer.

We will start with the first-level specification of such types. As we discussed earlier
(Takeaway 1.5.1.1), all basic values in C are numbers, but there are different kinds of num-
bers. As a principal distinction, we have two different classes of numbers, each with two
subclasses each: unsigned integersC , signed integersC , real floating-point numbersC ,
and complex floating-point numbersC . Each of these four classes contains several types.
They differ according to their precisionC , which determines the valid range of values that
are allowed for a particular type.10 Table 5.1 contains an overview of the 18 base types.

As you can see from the table, there are six types that we can’t use directly for arith-
metic, the so-called narrow typesC . They are promotedC to one of the wider types before
they are considered in an arithmetic expression. Nowadays, on any realistic platform,
this promotion will be a signed int of the same value as the narrow type, regardless of
whether the narrow type was signed.

10The term precision is used here in a restricted sense as the C standard defines it. It is different from the
accuracy of a floating-point computation.

5. BASIC VALUES AND DATA 43

TABLE 5.1. Base types according to the four main type classes. Types
with a gray background don’t allow for arithmetic; they are promoted
before doing arithmetic. Type char is special since it can be unsigned or
signed, depending on the platform. All types in this table are considered
to be distinct types, even if they have the same class and precision.

Class Systematic name Other name Rank

Integers

Unsigned

_Bool bool 0
unsigned char 1
unsigned short 2
unsigned int unsigned 3
unsigned long 4
unsigned long long 5

[Un]signed char 1

Signed

signed char 1
signed short short 2
signed int signed or int 3
signed long long 4
signed long long long long 5

Floating point

Real
float
double
long double

Complex
float _Complex float complex
double _Complex double complex
long double _Complex long double complex

Takeaway 1.5.2.1 Before arithmetic, narrow integer types are promoted to signed int.

Observe that among the narrow integer types, we have two prominent members: char
and bool. The first is C’s type that handles printable characters for text, and the second
holds truth values, false and true. As we said earlier, for C, even these are just some sort
of numbers.

The 12 remaining, unpromoted, types split nicely into the four classes.

Takeaway 1.5.2.2 Each of the four classes of base types has three distinct unpromoted
types.

Contrary to what many people believe, the C standard doesn’t prescribe the preci-
sion of these 12 types: it only constrains them. They depend on a lot of factors that are
implementation definedC .

One of the things the standard does prescribe is that the possible ranges of values for
the signed types must include each other according to their rank:

signed char short int long long long

But this inclusion does not need to be strict. For example, on many platforms, the set of
values of int and long are the same, although the types are considered to be different. An
analogous inclusion holds for the six unsigned types:

44 1. ACQUAINTANCE

bool
unsigned
char

unsigned
short

unsigned
unsigned
long

unsigned
long long

But remember that for any arithmetic or comparison, the narrow unsigned types are pro-
moted to signed int and not to unsigned int, as this diagram might suggest.

The comparison of the ranges of signed and unsigned types is more difficult. Obvi-
ously, an unsigned type can never include the negative values of a signed type. For the
non-negative values, we have the following inclusion of the values of types with corre-
sponding rank:

Non-negative signed values Unsigned values

That is, for a given rank, the non-negative values of the signed type fit into the unsigned
type. On any modern platform you encounter, this inclusion is strict: the unsigned type has
values that do not fit into the signed type. For example, a common pair of maximal values is
231− 1 = 2 147 483 647 for signed int and 232− 1 = 4 294 967 295 for unsigned int.

Because the interrelationship between integer types depends on the platform, choosing
the “best” type for a given purpose in a portable way can be a tedious task. Luckily, we
can get some help from the compiler implementation, which provides us with typedef s
such as size_t that represent certain features.

Takeaway 1.5.2.3 Use size_t for sizes, cardinalities, or ordinal numbers.

Remember that unsigned types are the most convenient types, since they are the only
types that have an arithmetic that is defined consistently with mathematical properties: the
modulo operation. They can’t raise signals on overflow and can be optimized best. They
are described in more detail in subsection 5.7.1.

Takeaway 1.5.2.4 Use unsigned for small quantities that can’t be negative.

If your program really needs values that may both be positive and negative but don’t
have fractions, use a signed type (see subsection 5.7.5).

Takeaway 1.5.2.5 Use signed for small quantities that bear a sign.

Takeaway 1.5.2.6 Use ptrdiff_t for large differences that bear a sign.

If you want to do fractional computation with a value such as 0.5 or 3.77189E+89,
use floating-point types (see subsection 5.7.7).

Takeaway 1.5.2.7 Use double for floating-point calculations.

Takeaway 1.5.2.8 Use double complex for complex calculations.

The C standard defines a lot of other types, among them other arithmetic types that
model special use cases. Table 5.2 list some of them. The second pair represents the
types with maximal width that the platform supports. This is also the type in which the
preprocessor does any of its arithmetic or comparison.

The two types time_t and clock_t are used to handle times. They are semantic
types, because the precision of the time computation can be different from platform to
platform. The way to have a time in seconds that can be used in arithmetic is the function
difftime: it computes the difference of two timestamps. clock_t values present the
platform’s model of processor clock cycles, so the unit of time is usually much less than a
second; CLOCKS_PER_SEC can be used to convert such values to seconds.

5. BASIC VALUES AND DATA 45

TABLE 5.2. Some semantic arithmetic types for specialized use cases

Type Header Context of definition Meaning
size_t stddef.h type for “sizes” and cardi-

nalities
ptrdiff_t stddef.h type for size differences
uintmax_t stdint.h maximum width unsigned

integer, preprocessor
intmax_t stdint.h maximum width signed inte-

ger, preprocessor
time_t time.h time(0), difftime(t1, t0) calendar time in seconds

since epoch
clock_t time.h clock() processor time

5.3. Specifying values. We have already seen several ways in which numerical con-
stants (literalsC) can be specified:

123 Decimal integer constantC . The most natural choice for most of us.
077 Octal integer constantC . This is specified by a sequence of digits, the first be-

ing 0 and the following between 0 and 7. For example, 077 has the value 63.
This type of specification merely has historical value and is rarely used nowa-
days.Only one octal literal is commonly used: 0 itself.

0xFFFF Hexadecimal integer constantC . This is specified by starting with 0x followed
by a sequence of digits between 0, . . . , 9 and a . . .f. For example, 0xbeaf has
the value 48815. The a .. f and x can also be written in capitals, 0XBEAF.

1.7E-13 Decimal floating-point constantsC . Quite familiar as the version that has a dec-
imal point. But there is also the “scientific” notation with an exponent. In the
general form, mEe is interpreted as m · 10e.

0x1.7aP-13 Hexadecimal floating-point constantsC . Usually used to describe floating-point
values in a form that makes it easy to specify values that have exact representa-
tions. The general form 0XhPe is interpreted as h · 2e. Here, h is specified as an
hexadecimal fraction. The exponent e is still specified as a decimal number.

’a’ Integer character constantC . These are characters put between ' apostrophes,
such as 'a' or '?'. These have values that are only implicitly fixed by the C
standard. For example, 'a' corresponds to the integer code for the character a
of the Latin alphabet.

Among character constants, the \ character has a special meaning. For ex-
ample, we already have seen '\n' for the newline character.

"hello" String literalsC . They specify text, such as that needed for the printf and puts
functions. Again, the \ character is special, as with character constants.11

All but the last are numerical constants: they specify numbers.12 String literals are
an exception and can be used to specify text that is known at compile time. Integrating
larger text into our code could be tedious, if we weren’t allowed to split string literals into
chunks:

puts("first␣line\n"
"another␣line\n"
"first␣and␣"

11If used in the context of the printf function, another character also becomes “special”: the % character. If
you want to print a literal % with printf, you have to duplicate it.

12You may have observed that complex numbers are not included in this list. We will see how to specify them
in subsection 5.3.1.

46 1. ACQUAINTANCE

"second␣part␣of␣the␣third␣line");

Takeaway 1.5.3.1 Consecutive string literals are concatenated.

The rules for numbers are a little bit more complicated.

Takeaway 1.5.3.2 Numerical literals are never negative.

That is, if we write something like -34 or -1.5E-23, the leading sign is not considered
part of the number but is the negation operator applied to the number that comes after it.
We will see shortly where this is important. Bizarre as this may sound, the minus sign in
the exponent is considered to be part of a floating-point literal.

We have already seen (Takeaway 1.5.1.2) that all literals must have not only a value
but also a type. Don’t mix up the fact of a constant having a positive value with its type,
which can be signed.

Takeaway 1.5.3.3 Decimal integer constants are signed.

This is an important feature: we’d probably expect the expression -1 to be a signed,
negative value.

To determine the exact type for integer literals, we always have a first fit rule.

Takeaway 1.5.3.4 A decimal integer constant has the first of the three signed types that
fits it.

This rule can have surprising effects. Suppose that on a platform, the minimal signed
value is−215 = −32768 and the maximum value is 215−1 = 32767. The constant 32768
then doesn’t fit into signed and is thus signed long. As a consequence, the expression
-32768 has type signed long. Thus the minimal value of the type signed on such a
platform cannot be written as a literal constant.[Exs 13]

Takeaway 1.5.3.5 The same value can have different types.

Deducing the type of an octal or hexadecimal constant is a bit more complicated.
These can also be of an unsigned type if the value doesn’t fit for a signed type. In the
earlier example, the hexadecimal constant 0x7FFF has the value 32767 and thus is type
signed. Other than for the decimal constant, the constant 0x8000 (value 32768 written in
hexadecimal) then is an unsigned, and expression -0x8000 again is unsigned.[Exs 14]

Takeaway 1.5.3.6 Don’t use octal or hexadecimal constants to express negative values.

As a consequence, there is only one choice left for negative values.

Takeaway 1.5.3.7 Use decimal constants to express negative values.

Integer constants can be forced to be unsigned or to be a type with minimal width.
This done by appending U, L, or LL to the literal. For example, 1U has value 1 and type
unsigned, 1L is signed long, and 1ULL has the same value 1 but type unsigned long long.[Exs 15]

Note, that we are representing C constants such as 1ULL in type-writer font and distinguish
them from their mathematical value 1 which is in normal font.

[Exs 13]Show that if the minimal and maximal values for signed long long have similar properties, the smallest
integer value for the platform can’t be written as a combination of one literal with a minus sign.

[Exs 14]Show that if the maximum unsigned is 216 − 1, then -0x8000 has value 32768, too.
[Exs 15]Show that the expressions -1U, -1UL, and -1ULL have the maximum values and type as the three non-

promoted unsigned types, respectively.

5. BASIC VALUES AND DATA 47

TABLE 5.3. Examples for constants and their types, under the supposi-
tion that signed and unsigned have the commonly used representation
with 32 bits

Constant x Value Type Value of −x
2147483647 +2147483647 signed −2147483647
2147483648 +2147483648 signed long −2147483648
4294967295 +4294967295 signed long −4294967295
0x7FFFFFFF +2147483647 signed −2147483647
0x80000000 +2147483648 unsigned +2147483648
0xFFFFFFFF +4294967295 unsigned +1

1 +1 signed −1
1U +1 unsigned +4294967295

A common error is to try to assign a hexadecimal constant to a signed with the ex-
pectation that it will represent a negative value. Consider a declaration such as int x =
0xFFFFFFFF. This is done under the assumption that the hexadecimal value has the same
binary representation as the signed value −1. On most architectures with 32-bit signed,
this will be true (but not on all of them); but then nothing guarantees that the effective value
+4294967295 is converted to the value −1. Table 5.3 has some examples of interesting
constants, their values and their types.

Remember that value 0 is important. It is so important that it has a lot of equivalent
spellings: 0, 0x0, and '\0' are all the same value, a 0 of type signed int. 0 has no
decimal integer spelling: 0.0 is a decimal spelling for the value 0 but is seen as a floating-
point value with type double.

Takeaway 1.5.3.8 Different literals can have the same value.

For integers, this rule looks almost trivial, but for floating-point constants it is less
obvious. Floating-point values are only an approximation of the value they present literally,
because binary digits of the fractional part may be truncated or rounded.

Takeaway 1.5.3.9 The effective value of a decimal floating-point constant may be dif-
ferent from its literal value.

For example, on my machine, the constant 0.2 has the value 0.2000000000000000111,
and as a consequence the constants 0.2 and 0.2000000000000000111 have the same
value.

Hexadecimal floating-point constants have been designed because they better corre-
spond to binary representations of floating-point values. In fact, on most modern architec-
tures, such a constant (that does not have too many digits) will exactly correspond to the lit-
eral value. Unfortunately, these beasts are almost unreadable for mere humans. For exam-
ple, consider the two constants 0x1.99999AP-3 and 0xC.CCCCCCCCCCCCCCDP-6. The first
corresponds to 1.60000002384 ∗ 2−3 and the second to 12.8000000000000000002 ∗ 2−6;
thus, expressed as decimal floating points, their values are approximatively 0.20000000298
and 0.200000000000000000003, respectively. So the two constants have values that are
very close to each other, whereas their representation as hexadecimal floating-point con-
stants seems to put them far apart.

Finally, floating-point constants can be followed by the letter f or F to denote a float
or by l or L to denote a long double. Otherwise, they are of type double. Be aware that
different types of constants generally lead to different values for the same literal. Here is a
typical example:

48 1. ACQUAINTANCE

float double long double
literal 0.2F 0.2 0.2L

value 0x1.99999AP-3F 0x1.999999999999AP-3 0xC.CCCCCCCCCCCCCCDP-6L

Takeaway 1.5.3.10 Literals have value, type, and binary representations.

5.3.1. Complex constants. Complex types are not necessarily supported by all C plat-
forms. This fact can be checked by inspecting __STDC_NO_COMPLEX__. To have full
support of complex types, the header complex.h should be included. If you use tgmath.h<complex.h>

<tgmath.h> for mathematical functions, this is already done implicitly.
Unfortunately, C provides no literals to specify constants of a complex type. It only

has several macros16 that may ease the manipulation of these types.
The first possibility to specify complex values is the macro CMPLX, which comprises

two floating-point values, the real and imaginary parts, in one complex value. For example,
CMPLX(0.5, 0.5) is a double complex value with the real and imaginary part of one-half.
Analogously, there are CMPLXF for float complex and CMPLXL for long double complex.

Another, more convenient, possibility is provided by the macro I, which represents
a constant value of type float complex such that I*I has the value −1. One-character
macro names in uppercase are often used in programs for numbers that are fixed for the
whole program. By itself, it is not a brilliant idea (the supply of one-character names is
limited), but you should definitely leave I alone.

Takeaway 1.5.3.11 I is reserved for the imaginary unit.

I can be used to specify constants of complex types similar to the usual mathe-
matical notation. For example, 0.5 + 0.5*I would be of type double complex and
0.5F + 0.5F*I of float complex. The compiler implicitly convertsC the result to the
wider of the types if we mix, for example, float and double constants for real and imag-
inary parts.

CHALLENGE 5 (complex numbers). Can you extend the derivative (Challenge 2) to the
complex domain: that is, functions that receive and return double complex values?

5.4. Implicit conversions. As we have seen in the examples, the type of an operand
has an influence on the type of an operator expression such as -1 or -1U: whereas the first is
a signed int, the second is an unsigned int. The latter might be particularly surprising
for beginners, because an unsigned int has no negative values and so the value of -1U is
a large positive integer.

Takeaway 1.5.4.1 Unary - and + have the type of their promoted argument.

So, these operators are examples where the type usually does not change. In cases
where they do change, we have to rely on C’s strategy to do implicit conversions: that is,
to move a value with a specific type to one that has another, desired, type. Consider the
following examples, again under the assumption that −2147483648 and 2147483647 are
the minimal and maximal values of a signed int, respectively:

16We will only see in subsection 5.6.3 what macros really are. For now, just take them as names to which the
compiler has associated some specific property.

5. BASIC VALUES AND DATA 49

double a = 1; // Harmless; value fits type
signed short b = -1; // Harmless; value fits type
signed int c = 0x80000000; // Dangerous; value too big for type
signed int d = -0x80000000; // Dangerous; value too big for type
signed int e = -2147483648; // Harmless; value fits type
unsigned short g = 0x80000000; // Loses information; has value 0

Here, the initializations of a and b are harmless. The respective values are well in the
range of the desired types, so the C compiler can convert them silently.

The next two conversions for c and d are problematic. As we have seen, 0x80000000
is of type unsigned int and does not fit into a signed int. So c receives a value that
is implementation-defined, and we have to know what our platform has decided to do in
such cases. It could just reuse the bit pattern of the value on the right or terminate the
program. As for all implementation-defined features, which solution is chosen should be
documented by your platform, but be aware that this can change with new versions of your
compiler or may be switched by compiler arguments.

For the case of d, the situation is even more complicated: 0x80000000 has the value
2147483648, and we might expect that -0x80000000 is just −2147483648. But since
effectively -0x80000000 is again 2147483648, the same problem arises as for c.[Exs 17]

Then, e is harmless, again. This is because we used a negated decimal literal -2147483648,
which has type signed long and whose value effectively is−2147483648 (shown earlier).
Since this value fits into a signed int, the conversion can be done with no problem.

The last example for g is ambiguous in its consequences. A value that is too large for
an unsigned type is converted according to the modulus. Here in particular, if we assume
that the maximum value for unsigned short is 216 − 1, the resulting value is 0. Whether
or not such a “narrowing” conversion is the desired outcome is often difficult to tell.

Takeaway 1.5.4.2 Avoid narrowing conversions.

Takeaway 1.5.4.3 Don’t use narrow types in arithmetic.

The type rules become even more complicated for operators such as addition and
multiplication that have two operands, because these then may have different types. Here
are some examples of operations that involve floating-point types:

1 + 0.0 // Harmless; double
1 + I // Harmless; complex float
INT_MAX + 0.0F // May lose precision; float
INT_MAX + I // May lose precision; complex float
INT_MAX + 0.0 // Usually harmless; double

Here, the first two examples are harmless: the value of the integer constant 1 fits well into
the type double or complex float. In fact, for most such mixed operations, whenever the
range of one type fits into the range of the other, the result has the type of the wider range.

The next two are problematic because INT_MAX, the maximal value for signed int,
usually will not fit into a float or complex float. For example, on my machine, INT_MAX +
0.0F is the same as INT_MAX + 1.0F and has the value 2147483648. The last line shows
that for an operation with double, this would work fine on most platforms. Neverthe-
less, on an existing or future platform where int is 64 bit, an analogous problem with the
precision could occur.

Because there is no strict inclusion of value ranges for integer types, deducing the type
of an operation that mixes signed and unsigned values can be nasty:

[Exs 17]Under the assumption that the maximum value for unsigned int is 0xFFFFFFFF, prove that
-0x80000000 == 0x80000000.

50 1. ACQUAINTANCE

-1 < 0 // True , harmless , same signedness
-1L < 0 // True , harmless , same signedness
-1U < 0U // False , harmless , same signedness
-1 < 0U // False , dangerous , mixed signedness
-1U < 0 // False , dangerous , mixed signedness
-1L < 0U // Depends , dangerous , same or mixed signedness
-1LL < 0UL // Depends , dangerous , same or mixed signedness

The first three comparisons are harmless, because even if they mix operands of different
types, they do not mix signedness. Since for these cases the ranges of possible values
nicely contain each other, C simply converts the other type to the wider one and does the
comparison there.

The next two cases are unambiguous, but perhaps not what a naive programmer would
expect. In fact, for both, all operands are converted to unsigned int. Thus both negated
values are converted to large unsigned values, and the result of the comparison is false.

The last two comparisons are even more problematic. On platforms where UINT_MAX ≤
LONG_MAX, 0U is converted to 0L, and thus the first result is true. On other platforms with
LONG_MAX < UINT_MAX, -1L is converted to -1U (that is, UINT_MAX), and thus the first
comparison is false. Analogous observations hold for the second comparison of the last
two, but be aware that there is a good chance the outcome of the two is not the same.

Examples like the last two comparisons can give rise to endless debates in favor of
or against signed or unsigned types, respectively. But they show only one thing: that the
semantics of mixing signed and unsigned operands is not always clear. There are cases
where either possible choice of an implicit conversion is problematic.

Takeaway 1.5.4.4 Avoid operations with operands of different signedness.

Takeaway 1.5.4.5 Use unsigned types whenever you can.

Takeaway 1.5.4.6 Chose your arithmetic types such that implicit conversions are harm-
less.

5.5. Initializers. We have seen (subsection 2.3) that the initializer is an important
part of an object definition. Initializers help us to guarantee that a program execution is
always in a defined state: that whenever we access an object, it has a well-known value
that determines the state of the abstract machine.

Takeaway 1.5.5.1 All variables should be initialized.

There are only few exception to that rule: variable-length arrays (VLA); see subsec-
tion 6.1.3, which don’t allow for an initializer, and code that must be highly optimized.
The latter mainly occurs in situations that use pointers, so this is not yet relevant to us.
For most code that we are able to write so far, a modern compiler will be able to trace the
origin of a value to its last assignment or its initialization. Superfluous initializations or
assignments will simply be optimized out.

For scalar types such as integers and floating points, an initializer just contains an
expression that can be converted to that type. We have seen a lot of examples of that.
Optionally, such an initializer expression may be surrounded with {}. Here are some
examples:

double a = 7.8;
double b = 2 * a;
double c = { 7.8 };
double d = { 0 };

5. BASIC VALUES AND DATA 51

Initializers for other types must have these {}. For example, array initializers contain
initializers for the different elements, each of which is followed by a comma:

double A[] = { 7.8, };
double B[3] = { 2 * A[0], 7, 33, };
double C[] = { [0] = 6, [3] = 1, };

A

[0]

double 7.8

B

[0]

double 15.6

[1]

double 7.0

[2]

double 33.0

C

[0]

double 6.0

[1]

double 0.0

[2]

double 0.0

[3]

double 1.0

As we have seen, arrays that have an incomplete typeC because there is no length speci-
fication are completed by the initializer to fully specify the length. Here, A has only one
element, whereas C has four. For the first two initializers, the element to which the scalar
initialization applies is deduced from the position of the scalar in the list: for example,
B[1] is initialized to 7. Designated initializers as for C are by far preferable, since they
make the code more robust against small changes in declarations.

Takeaway 1.5.5.2 Use designated initializers for all aggregate data types.

If you don’t know how to initialize a variable of type T, the default initializerCT a =
{0} will almost18 always do.

Takeaway 1.5.5.3 {0} is a valid initializer for all object types that are not VLA.

Several things ensure that this works. First, if we omit the designation (the .membername
for struct [see subsection 6.3] or [n] for arrays [see section 6.1]) initialization is just done
in declaration orderC : that is, the 0 in the default initializer designates the very first mem-
ber that is declared, and all other members are then initialized by default to 0 as well. Then,
the {} form of initializers for scalars ensures that { 0 } is also valid for them.

Maybe your compiler warns you about this: annoyingly, some compiler implementers
don’t know about this special rule. It is explicitly designed as a catch-all initializer in the
C standard, so this is one of the rare cases where I would switch off a compiler warning.

In initializers, we often have to specify values that have a particular meaning for the
program.

5.6. Named constants. A common issue even in small programs is that they use
special values for some purposes that are textually repeated all over. If for one reason or
another this value changes, the program falls apart. Take an artificial setting as an example
where we have arrays of strings,19 on which we would like to perform some operations:

char const*const bird [3] = {
"raven",
"magpie",
"jay",

};

18The exceptions are variable-length arrays; see subsection 6.1.3.
19This uses a pointer, type char const*const, to refer to strings. We will see later how this particular

technique works.

52 1. ACQUAINTANCE

char const*const pronoun [3] = {
"we",
"you",
"they",

};
char const*const ordinal [3] = {

"first",
"second",
"third",

};
...
for (unsigned i = 0; i < 3; ++i)

printf("Corvid␣%u␣is␣the␣%s\n", i, bird[i]);
...
for (unsigned i = 0; i < 3; ++i)

printf("%s␣plural␣pronoun␣is␣%s\n", ordinal[i], pronoun[i]);

Here we use the constant 3 in several places, and with three different “meanings” that
are not very correlated. For example, an addition to our set of corvids would require two
separate code changes. In a real setting, there might be many more places in the code
that depend on this particular value, and in a large code base this can be very tedious to
maintain.

Takeaway 1.5.6.1 All constants with a particular meaning must be named.

It is equally important to distinguish constants that are equal, but for which equality is
just a coincidence.

Takeaway 1.5.6.2 All constants with different meanings must be distinguished.

C has surprisingly little means to specify named constants, and its terminology even
causes a lot of confusion about which constructs effectively lead to compile-time constants.
So we first have to get the terminology straight (subsection 5.6.1) before we look into the
only proper named constants that C provides: enumeration constants (subsection 5.6.2).
The latter will help us to replace the different versions of 3 in our example with something
more explanatory. A second, generic, mechanism complements this feature with simple
text replacement: macros (subsection 5.6.3). Macros only lead to compile-time constants
if their replacements are composed of literals of base types, as we have seen. If we want to
provide something close to the concept of constants for more-complicated data types, we
have to provide them as temporary objects (subsection 5.6.4).

5.6.1. Read-only objects. Don’t confuse the term constant, which has a very specific
meaning in C, with objects that can’t be modified. For example, in the previous code,
bird, pronoun, and ordinal are not constants according to our terminology; they are
const-qualified objects. This qualifierC specifies that we don’t have the right to change
this object. For bird, neither the array entries nor the actual strings can be modified, and
your compiler should give you a diagnostic if you try to do so:

Takeaway 1.5.6.3 An object of const-qualified type is read-only.

That doesn’t mean the compiler or run-time system may not perhaps change the value
of such an object: other parts of the program may see that object without the qualification
and change it. The fact that you cannot write the summary of your bank account directly
(but only read it) doesn’t mean it will remain constant over time.

There is another family of read-only objects that unfortunately are not protected by
their type from being modified: string literals.

Takeaway 1.5.6.4 String literals are read-only.

5. BASIC VALUES AND DATA 53

If introduced today, the type of string literals would certainly be char const[], an
array of const-qualified characters. Unfortunately, the const keyword was introduced to
the C language much later than string literals, and therefore it remained as it is for backward
compatibility.20

Arrays such as bird also use another technique to handle string literals. They use a
pointerC type, char const*const, to “refer” to a string literal. A visualization of such an
array looks like this:

bird

[0]

char const*const

[1]

char const*const

[2]

char const*const

↓ ↓ ↓
"raven" "magpie" "jay"

That is, the string literals themselves are not stored inside the array bird but in some
other place, and bird only refers to those places. We will see much later, in subsections 6.2
and 11, how this mechanism works.

5.6.2. Enumerations. C has a simple mechanism to name small integers as we needed
them in the example, called enumerationsC :

enum corvid { magpie , raven , jay , corvid_num , };
char const*const bird[corvid_num] = {

[raven] = "raven",
[magpie] = "magpie",
[jay] = "jay",

};
...
for (unsigned i = 0; i < corvid_num; ++i)

printf("Corvid␣%u␣is␣the␣%s\n", i, bird[i]);

This declares a new integer type enum corvid for which we know four different val-
ues.

Takeaway 1.5.6.5 Enumeration constants have either an explicit or a positional value.

As you might have guessed, positional values start from 0 onward, so in our example
we have raven with value 0, magpie with 1, jay with 2, and corvid_num with 3. This last
3 is obviously the 3 we are interested in.

bird

[magpie]

char const*const

[raven]

char const*const

[jay]

char const*const

↓ ↓ ↓
"magpie" "raven" "jay"

Notice that this uses a different order for the array entries than before, and this is one
of the advantages of the approach with enumerations: we do not have to manually track
the order we used in the array. The ordering that is fixed in the enumeration type does that
automatically.

Now, if we want to add another corvid, we just put it in the list, anywhere before
corvid_num:

LISTING 5.1. An enumeratin type and related array of strings
enum corvid { magpie , raven , jay , chough , corvid_num , };
char const*const bird[corvid_num] = {

[chough] = "chough",
[raven] = "raven",
[magpie] = "magpie",

20A third class of read-only objects exist: temporary objects. We will see them later, in subsection 13.2.2.

54 1. ACQUAINTANCE

[jay] = "jay",
};

As for most other narrow types, there is not really much interest in declaring variables
of an enumeration type; for indexing and arithmetic, they would be converted to a wider
integer, anyhow. Even the enumeration constants themselves aren’t of the enumeration
type:

Takeaway 1.5.6.6 Enumeration constants are of type signed int.

So the interest really lies in the constants, not in the newly created type. We can thus
name any signed int constant that we need, without even providing a tagC for the type
name:

enum { p0 = 1, p1 = 2*p0, p2 = 2*p1, p3 = 2*p2, };

To define these constants, we can use integer constant expressionsC (ICE). Such an
ICE provides a compile-time integer value and is much restricted. Not only must its value
be determinable at compile time (no function call allowed), but also no evaluation of an
object must participate as an operand to the value:

signed const o42 = 42;
enum {

b42 = 42, // Ok: 42 is a literal.
c52 = o42 + 10, // Error: o42 is an object.
b52 = b42 + 10, // Ok: b42 is not an object.

};

Here, o42 is an object, const-qualified but still, so the expression for c52 is not an
“integer constant expression.”

Takeaway 1.5.6.7 An integer constant expression doesn’t evaluate any object.

So, principally, an ICE may consist of any operations with integer literals, enumer-
ation constants, _Alignof and offsetof subexpressions, and eventually some sizeof
subexpressions.21

Still, even when the value is an ICE, to be able to use it to define an enumeration
constant, you have to ensure that the value fits into a signed.

5.6.3. Macros. Unfortunately, there is no other mechanism to declare constants of
other types than signed int in the strict sense of the C language. Instead, C proposes
another powerful mechanism that introduces textual replacement of the program code:
macrosC . A macro is introduced by a preprocessorC #define:

define M_PI 3.14159265358979323846

This macro definition has the effect that the identifier M_PI is replaced in the following
program code by the double constant. Such a macro definition consists of five different
parts:

(1) A starting # character that must be the first non-blank character on the line
(2) The keyword define
(3) An identifier that is to be declared, here M_PI
(4) The replacement text, here 3.14159265358979323846
(5) A terminating newline character

21We will handle the latter two concepts in subsections 12.7 and 12.1.

5. BASIC VALUES AND DATA 55

With this trick, we can declare textual replacement for constants of unsigned, size_t, and
double. In fact, the implementation-imposed bound of size_t, SIZE_MAX, is defined, as
well as many of the other system features we have already seen: EXIT_SUCCESS, false,
true, not_eq, bool, complex . . . Here, in this book, such C standard macros are all printed
in dark red.

The spelling of these examples from the C standard is not representative for the con-
ventions that are generally used in a large majority of software projects. Most of them have
quite restrictive rules such that macros visually stick out from their surroundings.

Takeaway 1.5.6.8 Macro names are in all caps.

Only deviate from that rule if you have good reasons, in particular not before you
reach level 3.

5.6.4. Compound literals. For types that don’t have literals that describe their con-
stants, things get even more complicated. We have to use compound literalsC on the
replacement side of the macro. Such a compound literal has the form

(T){ INIT }

That is, a type, in parentheses, followed by an initializer. Here’s an example:

define CORVID_NAME /**/ \
(char const*const[corvid_num]){ \

[chough] = "chough", \
[raven] = "raven", \
[magpie] = "magpie", \
[jay] = "jay", \

}

With that, we could leave out the bird array and rewrite our for loop:

for (unsigned i = 0; i < corvid_num; ++i)
printf("Corvid␣%u␣is␣the␣%s\n", i, CORVID_NAME[i]);

Whereas compound literals in macro definitions can help us to declare something that
behaves similarly to a constant of a chosen type, it isn’t a constant in the narrow sense of
C.

Takeaway 1.5.6.9 A compound literal defines an object.

Overall, this form of macro has some pitfalls:
• Compound literals aren’t suitable for ICE.
• For our purpose here ,to declare named constants, the type T should be const-

qualifiedC . This ensures that the optimizer has a bit more slack to generate good
binary code for such a macro replacement.

• There must be space between the macro name and the () of the compound literal,
here indicated by the /**/ comment. Otherwise, this would be interpreted as the
start of a definition of a function-like macro. We will see these much later.

• A backspace character \ at the very end of the line can be used to continue the
macro definition to the next line.

• There must be no ; at the end of the macro definition. Remember, it is all just
text replacement.

Takeaway 1.5.6.10 Don’t hide a terminating semicolon inside a macro.

Also, for readability of macros, please pity the poor occasional reader of your code:

Takeaway 1.5.6.11 Right-indent continuation markers for macros to the same column.

As you can see in the example, this helps to visualize the entire spread of the macro
definition easily.

56 1. ACQUAINTANCE

5.7. Binary representions. The binary representation of a type is a model that de-
scribes the possible values for that type. It is not the same as the in-memory object repre-
sentation that describes the more or less physical storage of values of a given type.

Takeaway 1.5.7.1 The same value may have different binary representations.

5.7.1. Unsigned integers. We have seen that unsigned integer types are those arith-
metic types for which the standard arithmetic operations have a nice, closed mathematical
description. They are closed under arithmetic operations:

Takeaway 1.5.7.2 Unsigned arithmetic wraps nicely.

In mathematical terms, they implement a ring, ZN , the set of integers modulo some
number N . The values that are representable are 0, . . . , N − 1. The maximum value
N − 1 completely determines such an unsigned integer type and is made available through
a macro with terminating _MAX in the name. For the basic unsigned integer types, these are
UINT_MAX, ULONG_MAX, and ULLONG_MAX , and they are provided through limits.h. As we<limits.h>

have seen, the one for size_t is SIZE_MAX from stdint.h.<stdint.h>

The binary representation for non-negative integer values is always exactly what the
term indicates: such a number is represented by binary digits b0, b1, . . . , bp−1 called bitsC .
Each of the bits has a value of 0 or 1. The value of such a number is computed as

(1)
p−1∑
i=0

bi2
i.

The value p in that binary representation is called the precisionC of the underlying
type. Bit b0 is called the least-significant bitC , and LSB, bp−1 is the most-significant bitC
(MSB).

Of the bits bi that are 1, the one with minimal index i is called the least-significant
bit setC , and the one with the highest index is the most-significant bit setC . For example,
for an unsigned type with p = 16, the value 240 would have b4 = 1, b5 = 1, b6 = 1, and
b7 = 1. All other bits of the binary representation are 0, the least-significant bit set i is b4,
and the most-significant bit set is b7. From (1), we see immediately that 2p is the first value
that cannot be represented with the type. Thus N = 2p and

Takeaway 1.5.7.3 The maximum value of any integer type is of the form 2p − 1.

Observe that for this discussion of the representation of non-negative values, we haven’t
argued about the signedness of the type. These rules apply equally to signed and unsigned
types. Only for unsigned types, we are lucky, and what we have said so far completely
suffices to describe such an unsigned type.

Takeaway 1.5.7.4 Arithmetic on an unsigned integer type is determined by its precision.

Finally, table 5.4 shows the bounds of some of the commonly used scalars throughout
this book.

5.7.2. Bit sets and bitwise operators. This simple binary representation of unsigned
types allows us to use them for another purpose that is not directly related to arithmetic: as
bit sets. A bit set is a different interpretation of an unsigned value, where we assume that
it represents a subset of the base set V = {0, . . . , p − 1} and where we take element i to
be member of the set, if the bit bi is present.

There are three binary operators that operate on bit sets: |, &, and ^. They represent
the set union A ∪B, set intersection A ∩B, and symmetric difference A∆B, respectively.
For an example, let us choose A = 240, representing {4, 5, 6, 7}, and B = 287, the bit

5. BASIC VALUES AND DATA 57

TABLE 5.4. Bounds for scalar types used in this book

Name [min, max] Where Typical
size_t [0, SIZE_MAX] <stdint.h> [0, 2w − 1], w = 32, 64

double [±DBL_MIN, ±DBL_MAX] <float.h> [±2−w−2,±2w], w = 1024
signed [INT_MIN, INT_MAX] <limits.h> [−2w, 2w − 1], w = 31

unsigned [0, UINT_MAX] <limits.h> [0, 2w − 1], w = 32

bool [false, true] <stdbool.h> [0, 1]

ptrdiff_t [PTRDIFF_MIN, PTRDIFF_MAX] <stdint.h> [−2w, 2w − 1], w = 31, 63
char [CHAR_MIN, CHAR_MAX] <limits.h> [0, 2w − 1], w = 7, 8

unsigned char [0, UCHAR_MAX] <limits.h> [0, 255]

TABLE 5.5. Effects of bitwise operators.

Bit op Value Hex b15 . . . b0 Set op Set
V 65535 0xFFFF 1111111111111111 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15}
A 240 0x00F0 0000000011110000 {4, 5, 6, 7}
~A 65295 0xFF0F 1111111100001111 V \A {0, 1, 2, 3, 8, 9, 10,

11, 12, 13, 14, 15}
-A 65296 0xFF10 1111111100010000 {4, 8, 9, 10,

11, 12, 13, 14, 15}
B 287 0x011F 0000000100011111 {0, 1, 2, 3, 4, 8}
A|B 511 0x01FF 0000000111111111 A ∪B {0, 1, 2, 3, 4, 5, 6, 7, 8}
A&B 16 0x0010 0000000000010000 A ∩B {4}
A^B 495 0x01EF 0000000111101111 A∆B {0, 1, 2, 3, 5, 6, 7, 8}

set {0, 1, 2, 3, 4, 8}; see table 5.5. For the result of these operations, the total size of the
base set, and thus the precision p, is not needed. As for the arithmetic operators, there are
corresponding assignment operators &=, |=, and ^=, respectively.[Exs 22][Exs 23][Exs 24][Exs 25]

There is yet another operator that operates on the bits of the value: the complement
operator ~. The complement ~A would have value 65295 and would correspond to the set
{0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15}. This bit complement always depends on the preci-
sion p of the type.[Exs 26][Exs 27]

All of these operators can be written with identifiers: bitor, bitand, xor, or_eq,
and_eq, xor_eq, and compl if you include header iso646.h. <iso646.h>

A typical usage of bit sets is for flags, variables that control certain settings of a pro-
gram:

enum corvid { magpie , raven , jay , chough , corvid_num , };
#define FLOCK_MAGPIE 1U
#define FLOCK_RAVEN 2U
#define FLOCK_JAY 4U
#define FLOCK_CHOUGH 8U
#define FLOCK_EMPTY 0U
#define FLOCK_FULL 15U

int main(void) {
unsigned flock = FLOCK_EMPTY;

...

[Exs 22]Show that A \B can be computed by A - (A&B).
[Exs 23]Show that V + 1 is 0.
[Exs 24]Show that A^B is equivalent to (A - (A&B)) + (B - (A&B)) and A + B - 2*(A&B).
[Exs 25]Show that A|B is equivalent to A + B - (A&B).

[Exs 26]Show that ~B can be computed by V - B.
[Exs 27]Show that -B = ~B + 1.

58 1. ACQUAINTANCE

if (something) flock |= FLOCK_JAY;

...

if (flock&FLOCK_CHOUGH)
do_something_chough_specific(flock);

}

Here the constants for each type of corvid are a power of two, and so they have exactly one
bit set in their binary representation. Membership in a flock can then be handled through
the operators: |= adds a corvid to flock, and & with one of the constants tests whether a
particular corvid is present.

Observe the similarity between operators & and && or | and ||: if we see each of
the bits bi of an unsigned as a truth value, & performs the ‘logical and of all bits of
its arguments simultaneously. This is a nice analogy that should help you memorize the
particular spelling of these operators. On the other hand, keep in mind that the operators
|| and && have short-circuit evaluation, so be sure to distinguish them clearly from the bit
operators.

5.7.3. Shift operators. The next set of operators builds a bridge between interpretation
of unsigned values as numbers and as bit sets. A left-shift operation << corresponds to the
multiplication of the numerical value by the corresponding power of two. For example,
for A = 240, the set {4, 5, 6, 7}, A << 2 is 240 · 22 = 240 · 4 = 960, which represents
the set {6, 7, 8, 9}. Resulting bits that don’t fit into the binary representation for the type
are simply omitted. In our example, A << 9 would correspond to set {13, 14, 15, 16} (and
value 122880), but since there is no bit 16, the resulting set is {13, 14, 15}, value 57344.

Thus, for such a shift operation, the precision p is again important. Not only are bits
that don’t fit are dropped, but it also restricts the possible values of the operand on the right:

Takeaway 1.5.7.5 The second operand of a shift operation must be less than the preci-
sion.

There is an analogous right-shift operation >> that shifts the binary representation
toward the less-significant bits. Analogously, this corresponds to an integer division by a
power of two. Bits in positions less than or equal to the shift value are omitted for the
result. Observe that for this operation, the precision of the type isn’t important.[Exs 28]

Again, there are also corresponding assignment operators <<= and >>=.
The primary use of the left-shift operator << is specifying powers of two. In our

example, we can now replace the #define s:

#define FLOCK_MAGPIE (1U << magpie)
#define FLOCK_RAVEN (1U << raven)
#define FLOCK_JAY (1U << jay)
#define FLOCK_CHOUGH (1U << chough)
#define FLOCK_EMPTY 0U
#define FLOCK_FULL ((1U << corvid_num)-1)

This makes the example more robust against changes to the enumeration.
5.7.4. Boolean values. The Boolean data type in C is also considered an unsigned

type. Remember that it has only values 0 and 1, so there are no negative values. For back-
ward compatibility with ancient programs, the basic type is called _Bool. The name bool
as well as the constants false and true only come through the inclusion of stdbool.h.

<stdbool.h>
Unless you have to maintain a really old code base, you should use the latter.

[Exs 28]Show that the bits that are “lost” in an operation x>>n correspond to the remainder x % (1ULL << n).

5. BASIC VALUES AND DATA 59

Treating bool as an unsigned type is a stretch of the concept. Assignment to a variable
of that type doesn’t follow the modulus rule of Takeaway 1.4.1.5, but a special rule for
Boolean values (Takeaway 1.3.1.1).

You will probably rarely need bool variables. They are only useful if you want to
ensure that the value is always reduced to false or true on assignment. Early versions of
C didn’t have a Boolean type, and many experienced C programmers still don’t use it.

5.7.5. Signed integers. Signed types are a bit more complicated than unsigned types.
A C implementation has to decide about two points:

• What happens on arithmetic overflow?
• How is the sign of a signed type represented?

Signed and unsigned types come in pairs according to their integer rank, with the notable
two exceptions from table 5.1: char and bool. The binary representation of the signed
type is constrained by the inclusion diagram that we have seen above.

Takeaway 1.5.7.6 Positive values are represented independently from signedness.

Or, stated otherwise, a positive value with a signed type has the same representation as
in the corresponding unsigned type. That is why the maximum value for any integer type
can be expressed so easily (Takeaway 1.5.7.3): signed types also have a precision, p, that
determines the maximum value of the type.

The next thing the standard prescribes is that signed types have one additional bit, the
sign bitC . If it is 0, we have a positive value; if it is 1, the value is negative. Unfortunately,
there are different concepts of how such a sign bit can be used to obtain a negative number.
C allows three different sign representationsC :

• Sign and magnitudeC
• Ones’ complementC
• Two’s complementC

The first two nowadays probably only have historical or exotic relevance: for sign
and magnitude, the magnitude is taken as positive values, and the sign bit simply specifies
that there is a minus sign. Ones’ complement takes the corresponding positive value and
complements all bits. Both representations have the disadvantage that two values evaluate
to 0: there is a positive and a negative 0.29

Commonly used on modern platforms is the two’s complement representation. It per-
forms exactly the same arithmetic as we have seen for unsigned types, but the upper half of
unsigned values (those with a high-order bit of 1) is interpreted as being negative. The fol-
lowing two functions are basically all that is needed to interpret unsigned values as signed
values:

bool is_negative(unsigned a) {
unsigned const int_max = UINT_MAX /2;
return a > int_max;

}
bool is_signed_less(unsigned a, unsigned b) {

if (is_negative(b) && !is_negative(a)) return false;
else return a < b;

}

Table 5.6 shows an example of how the negative of our example value 240 can be
constructed. For unsigned types, -A can be computed as ~A + 1.[Exs 30][Exs 31][Exs 32] Two’s

29Since these two have fallen completely out of use on modern architectures, efforts are underway to remove
them from the next revision of the C standard.

[Exs 30]Prove that for unsigned arithmetic, A + ~A is the maximum value.
[Exs 31]Prove that for unsigned arithmetic, A + ~A is −1.
[Exs 32]Prove that for unsigned arithmetic, A + (~A + 1) == 0.

60 1. ACQUAINTANCE

TABLE 5.6. Negation for 16-bit unsigned integer types

Op Value b15 . . . b0
A 240 0000000011110000
~A 65295 1111111100001111
+1 65295 0000000000000001
-A 65296 1111111100010000

complement representation performs exactly the same bit operation for signed types as
for unsigned types. It only interprets representations that have the high-order bit as being
negative.

When done that way, signed integer arithmetic will again behave more or less nicely.
Unfortunately, there is a pitfall that makes the outcome of signed arithmetic difficult to
predict: overflow. Where unsigned values are forced to wrap around, the behavior of a
signed overflow is undefinedC . The following two loops look much the same:

for (unsigned i = 1; i; ++i) do_something ();
for (signed i = 1; i; ++i) do_something ();

We know what happens for the first loop: the counter is incremented up to UINT_MAX
and then wraps around to 0. All of this may take some time, but after UINT_MAX-1 itera-
tions, the loop stops because i will have reached 0.

For the second loop, everything looks similar. But because here the behavior of over-
flow is undefined, the compiler is allowed to pretend that it will never happen. Since it also
knows that the value at the start is positive, it may assume that i, as long as the program
has defined behavior, is never negative or 0. The as-if Rule (Takeaway 1.5.1.7) allows it to
optimize the second loop to

while (true) do_something ();

That’s right, an infinite loop.

Takeaway 1.5.7.7 Once the abstract state machine reaches an undefined state, no fur-
ther assumption about the continuation of the execution can be made.

Not only that, the compiler is allowed to do what it pleases for the operation itself
(“Undefined? so let’s define it”), but it may also assume that it will never reach such a state
and draw conclusions from that.

Commonly, a program that has reached an undefined state is referred to as “having”
or “showing” undefined behavior. This wording is a bit unfortunate; in many such cases,
a program does not “show” any visible signs of weirdness. In the contrary, bad things will
be going on that you will not even notice for a long time.

Takeaway 1.5.7.8 It is your responsibility to avoid undefined behavior of all operations.

What makes things even worse is that on some platforms with some standard compiler
options will just look right. Since the behavior is undefined, on such a platform, signed
integer arithmetic might turn out to be basically the same as unsigned. But changing the
platform, the compiler, or some options can change that. All of a sudden, your program
that worked for years crashes out of nowhere.

Basically, what we have discussed up to this section always had well-defined behavior,
so the abstract state machine is always in a well-defined state. Signed arithmetic changes
this, so as long as you don’t need it, avoid it. We say that a program performs a trapC (or
just traps) if it is terminated abruptly before its usual end.

Takeaway 1.5.7.9 Signed arithmetic may trap badly.

5. BASIC VALUES AND DATA 61

One of the things that might already overflow for signed types is negation. We have
seen that INT_MAX has all bits but the sign bit set to 1. INT_MIN then has the “next” repre-
sentation: the sign bit set to 1 and all other values set to 0. The corresponding value is not
-INT_MAX.[Exs 33]

Takeaway 1.5.7.10 In twos’ complement representation, INT_MIN < -INT_MAX.

Or, stated otherwise, in twos’ complement representation, the positive value -INT_MIN
is out of bounds since the value of the operation is larger than INT_MAX.

Takeaway 1.5.7.11 Negation may overflow for signed arithmetic.

For signed types, bit operations work with the binary representation. So the value of a
bit operation depends in particular on the sign representation. In fact, bit operations even
allow us to detect the sign representation:

char const* sign_rep [4] =
{

[1] = "sign␣and␣magnitude",
[2] = "ones'␣complement",
[3] = "two's␣complement",
[0] = "weird",

};
enum { sign_magic = -1&3, };
...
printf("Sign␣representation:␣%s.\n", sign_rep[sign_magic]);

The shift operations then become really messy. The semantics of what such an opera-
tion is for a negative value is not clear.

Takeaway 1.5.7.12 Use unsigned types for bit operations.

5.7.6. Fixed-width integer types. The precision for the integer types that we have seen
so far can be inspected indirectly by using macros from limits.h, such as UINT_MAX and <limits.h>

LONG_MIN. The C standard only gives us a minimal precision for them. For the unsigned
types, these are

type minimal precision
bool 1
unsigned char 8
unsigned short 16
unsigned 16
unsigned long 32
unsigned long long 64

Under usual circumstances, these guarantees should give you enough information; but
under some technical constraints, such guarantees might not be sufficient, or you might
want to emphasize a particular precision. This may be the case if you want to use an
unsigned quantity to represent a bit set of a known maximal size. If you know that 32-bit
will suffice for your set, depending on your platform, you might want to choose unsigned
or unsigned long to represent it.

The C standard provides names for exact-width integer types in stdint.h. As the <stdint.h>

name indicates, they are of an exact prescribed “width,” which for provided unsigned types
is guaranteed to be the same as their precision.

Takeaway 1.5.7.13 If the type uintN_t is provided, it is an unsigned integer type with
exactly N bits of width and precision.

[Exs 33]Show that INT_MIN+INT_MAX is −1.

62 1. ACQUAINTANCE

Takeaway 1.5.7.14 If the type intN_t is provided, it is signed, with two’s complement
representation and has a width of exactly N bits and a precision of N −1.

None of these types is guaranteed to exist, but for a convenient set of powers of two, the
typedef must be provided if types with the corresponding properties exist.

Takeaway 1.5.7.15 If types with the required properties exist for values ofN = 8, 16, 32,
and 64, types uintN_t and intN_t, respectively, must be provided.

Nowadays, platforms usually provide uint8_t, uint16_t, uint32_t, and uint64_t
unsigned types and int8_t, int16_t, int32_t, and int64_t signed types. Their presence
and bounds can be tested with the macros UINT8_MAX, . . . , UINT64_MAX for unsigned types
and INT8_MIN, INT8_MAX, . . . , INT64_MIN and INT64_MAX, respectively.[Exs 34]

To encode literals of the requested type, there are the macros UINT8_C, . . . , UINT64_C,
and INT8_C, . . . , INT64_C, respectively. For example, on platforms where uint64_t is
unsigned long, INT64_C(1) expands to 1UL.

Takeaway 1.5.7.16 For any of the fixed-width types that are provided, _MIN (only signed),
maximum _MAX, and literals _C macros are provided, too.

Since we cannot know the type behind such a fixed-width type, it would be difficult to
guess the correct format specifier to use for printf and friends. The header inttypes.h<inttypes.h>

provides us with macros for that. for example, for N = 64, we are provided with PRId64,
PRIi64, PRIo64, PRIu64, PRIx64, and PRIX64, for printf formats "%d", "%i", "%o",
"%u", "%x" and "%X", respectively:

uint32_t n = 78;
int64_t max = (-UINT64_C (1)) >>1; // Same value as INT64_MAX
printf("n␣is␣%" PRIu32 ",␣and␣max␣is␣%" PRId64 "\n", n, max);

As you can see, these macros expand to string literals that are combined with other string
literals into the format string. This is certainly not the best candidate for a C coding beauty
contest.

5.7.7. Floating-point data. Whereas integers come near the mathematical concepts
of N (unsigned) or Z (signed), floating-point types are close to R (non-complex) or C
(complex). The way they differ from these mathematical concepts is twofold. First, there
is a size restriction on what is presentable. This is similar to what we have seen for integer
types. The include file float.h, for example, has constants DBL_MIN and DBL_MAX that<float.h>

provide us with the minimal and maximal values for double. But be aware that here,
DBL_MIN is the smallest number that is strictly greater than 0.0; the smallest negative
double value is -DBL_MAX.

But real numbers (R) have another difficulty when we want to represent them on a
physical system: they can have an unlimited expansion, such as the value 1

3 , which has
an endless repetition of the digit 3 in decimal representation, or the value of π, which is
“transcendent” and so has an endless expansion in any representation and doesn’t repeat in
any way.

C and other programming languages deal with these difficulties by cutting off the
expansion. The position where the expansion is cut is “floating” (thus the name) and
depends on the magnitude of the number in question.

In a view that is a bit simplified, a floating-point value is computed from the following
values:

s Sign (±1)

[Exs 34]If they exist, the values of all these macros are prescribed by the properties of the types. Think of a closed
formulas in N for these values.

SUMMARY 63

e Exponent, an integer
f1, . . . , fp values 0 or 1, the mantissa bits

For the exponent, we have emin ≤ e ≤ emax. p, the number of bits in the mantissa, is
called precision. The floating-point value is then given by this formula:

s · 2e ·
p∑
k=1

fk2−k.

The values p, emin, and emax are type dependent and therefore not represented ex-
plicitly in each number. They can be obtained through macros such as DBL_MANT_DIG (for
p, typically 53) DBL_MIN_EXP (emin, −1021), and DBL_MAX_EXP (emax, 1024).

If we have, for example, a number that has s = −1, e = −2, f1 = 1, f2 = 0, and
f2 = 1, its value is

−1 · 2−2 · (f12−1 + f22−2 + f22−3) = −1 · 1

4
· (1

2
+

1

8
) = −1 · 1

4
· 4 + 1

8
=
−5

32
which corresponds to the decimal value -0.15625. From that calculation, we see also that
floating-point values are always representable as a fraction that has some power of two in
the denominator.[Exs 35]

An important thing to keep in mind with such floating-point representations is that
values can be cut off during intermediate computations.

Takeaway 1.5.7.17 Floating-point operations are neither associative, commutative, nor
distributive.

So basically, they lose all the nice algebraic properties we are used to when doing
pure math. The problems that arise from that are particularly pronounced if we operate
with values that have very different orders of magnitude.[Exs 36] For example, adding a very
small floating-point value x with an exponent that is less than −p to a value y > 1 just
returns y again. As a consequence, it is really difficult to assert without further investigation
whether two computations have the “same” result. Such investigations are often cutting-
edge research questions, so we cannot expect to be able to assert equality or not. We are
only able to tell that the results are “close.”

Takeaway 1.5.7.18 Never compare floating-point values for equality.

The representation of the complex types is straightforward and identical to an array
of two elements of the corresponding real floating-point type. To access the real and
imaginary part of a complex number, two type generic macros also come with the header
tgmath.h: creal and cimag. For any z of one of the three complex types, we have that <tgmath.h>

z == creal(z) + cimag(z)*I.37

Summary

• C programs run in an abstract state machine that is mostly independent of the
specific computer where it is launched.

• All basic C types are kinds of numbers, but not all of them can be used directly
for arithmetic.

• Values have a type and a binary representation.
• When necessary, types of values are implicitly converted to fit the needs of par-

ticular places where they are used.

[Exs 35]Show that all representable floating-point values with e > p are multiples of 2e−p.
[Exs 36]Print the results of the following expressions: 1.0E-13 + 1.0E-13 and
(1.0E-13 + (1.0E-13 + 1.0)) - 1.0.

37We will learn about such function-like macros in section 8.1.2.

64 1. ACQUAINTANCE

• Variables must be explicitly initialized before their first use.
• Integer computations give exact values as long as there is no overflow.
• Floating-point computations only give approximated results that are cut off after

a certain number of binary digits.

6. DERIVED DATA TYPES 65

6. Derived data types

This section covers

• Grouping objects into arrays
• Using pointers as opaque types
• Combining objects into structures
• Giving types new names with typedef

All other data types in C are derived from the basic types that we know now. There
are four strategies for deriving data types. Two of them are called aggregate data types,
because they combine multiple instances of one or several other data types:

Arrays: These combine items that all have the same base type (subsection 6.1).
Structures: These combine items that may have different base types (subsection 6.3).

The two other strategies to derive data types are more involved:

Pointers: Entities that refer to an object in memory.
Pointers are by far the most involved concept, and we will delay a full discussion
of them to section 11. Here, in subsection 6.2, we will only discuss them as
opaque data types, without even mentioning the real purpose they fulfill.

Unions: These overlay items of different base types in the same memory location.
Unions require a deeper understanding of C’s memory model and are not of
much use in a programmer’s everyday life, so they are only introduced later, in
subsection 12.2.

There is a fifth strategy that introduces new names for types: typedef (subsection 6.4).
Unlike the previous four, this does not create a new type in C’s type system, but only creates
a new name for an existing type. In that way, it is similar to the definition of macros with
#define; thus the choice for the keyword for this feature.

6.1. Arrays. Arrays allow us to group objects of the same type into an encapsulating
object. We will see pointer types later (section 11), but many people who come to C are
confused about arrays and pointers. And this is completely normal: arrays and pointers are
closely related in C, and to explain them we face a chicken and egg problem: arrays look
like pointers in many contexts, and pointers refer to array objects. We chose an order of
introduction that is perhaps unusual: we will start with arrays and stay with them as long as
possible before introducing pointers. This may seem “wrong” to some of you, but remem-
ber that everything stated here must be viewed based on the as-if Rule (Takeaway 1.5.1.7):
we will first describe arrays in a way that is consistent with C’s assumptions about the
abstract state machine.

Takeaway 1.6.1.1 Arrays are not pointers.

Later, we will see how these two concepts relate, but for the moment it is important to
read this section without prejudice about arrays; otherwise, you will delay your ascent to a
better understanding of C.

6.1.1. Array declaration. We have already seen how arrays are declared: by placing
something like [N] after another declaration. For example:

double a[4];
signed b[N];

Here, a comprises 4 subobjects of type double and b comprises N of type signed. We
visualize arrays with diagrams like the following, with a sequence of boxes of their base

66 1. ACQUAINTANCE

type:

a

[0]

double ??

[1]

double ??

[2]

double ??

[3]

double ??

b

[0]

signed ?? · · · · · ·
[N-1]

signed ??

The dots · · · here indicate that there may be an unknown number of similar items between
the two boxes.

The type that composes an array may itself again be an array, forming a multidimen-
sional arrayC . The declarations for those become a bit more difficult to read since [] binds
to the left. The following two declarations declare variables of exactly the same type:

double C[M][N];
double (D[M])[N];

Both C and D are M objects of array type double[N]. This means we have to read a nested
array declaration from inside out to describe its structure:

C

[0]

[0][0]

double ?? · · ·
[0][N-1]

double ?? · · ·

[M-1]

[M-1][0]

double ?? · · ·
[M-1][N-1]

double ??

We also have seen how array elements are accessed and initialized, again with a pair
of []. In the previous example, a[0] is an object of double and can be used wherever we
want to use, for example, a simple variable. As we have seen, C[0] is itself an array, so
C[0][0], which is the same as (C[0])[0], is also an object of type double.

Initializers can use designated initializers (also using [] notation) to pick the spe-
cific position to which an initialization applies. The example code in listing 5.1 contains
such initializers. During development, designated initializers help to make our code robust
against small changes in array sizes or positions.

6.1.2. Array operations. Arrays are really just objects of a different type than we have
seen so far.

Takeaway 1.6.1.2 An array in a condition evaluates to true.

The truth of that comes from the array decay operation, which we will see later. An-
other important property is that we can’t evaluate arrays like other objects.

Takeaway 1.6.1.3 There are array objects but no array values.

So arrays can’t be operands for the value operators in table 4.1, and there is no arith-
metic declared on arrays (themselves).

Takeaway 1.6.1.4 Arrays can’t be compared.

Arrays also can’t be on the value side of the object operators in table 4.2. Most of
the object operators are likewise ruled out from having arrays as object operands, either
because they assume arithmetic or because they have a second value operand that would
have to be an array, too.

Takeaway 1.6.1.5 Arrays can’t be assigned to.

6. DERIVED DATA TYPES 67

From table 4.2, we also know that there are only four operators left that work on
arrays as object operators. And we know the operator [].38 The array decay operation, the
address operator &, and the sizeof operator will be introduced later.

6.1.3. Array length. There are two categories of arrays: fixed-length arraysC (FLAs)
and variable-length arraysC (VLAs). The first are a concept that has been present in C
since the beginning; this feature is shared with many other programming languages. The
second was introduced in C99 and is relatively unique to C, and it has some restrictions on
its usage.

Takeaway 1.6.1.6 VLAs can’t have initializers.

Takeaway 1.6.1.7 VLAs can’t be declared outside functions.

So let’s start at the other end and see which arrays are in fact FLAs, such that they
don’t fall under these restrictions.

Takeaway 1.6.1.8 The length of an FLA is determined by an integer constant expression
(ICE) or by an initializer.

For the first of these alternatives, the length is known at compile time through an ICE
(introduced in subsection 5.6.2). There is no type restriction for the ICE: any integer type
will do.

Takeaway 1.6.1.9 An array-length specification must be strictly positive.

Another important special case leads to an FLA: when there is no length specification
at all. If the [] are left empty, the length of the array is determined from its initializer, if
any:

double E[] = { [3] = 42.0, [2] = 37.0, };
double F[] = { 22.0, 17.0, 1, 0.5, };

Here, E and F both are of type double[4]. Since such an initializer’s structure can always
be determined at compile time without necessarily knowing the values of the items, the
array is still an FLA.

E

[0]

double 0.0

[1]

double 0.0

[2]

double 37.0

[3]

double 42.0

F

[0]

double 22.0

[1]

double 17.0

[2]

double 1.0

[3]

double 0.5

All other array variable declarations lead to VLAs.

Takeaway 1.6.1.10 An array with a length that is not an integer constant expression is
an VLA.

The length of an array can be computed with the sizeof operator. That operator
provides the size of any object,39so the length of an array can be calculated using simple
division.40

Takeaway 1.6.1.11 The length of an array A is (sizeof A)/(sizeof A[0]).

That is, it is the total size of the array object, divided by the size of any of the array
elements.

38The real C jargon story about arrays and [] is a bit more complicated. Let us apply the as-if Rule (Take-
away 1.5.1.7) to our explanation. All C programs behave as if the [] are directly applied to an array object.

39Later, we will see what the unit of measure for such sizes is.
40Note also that the sizeof operator comes in two different syntactical forms. If applied to an object, as it is

here, it does not need parentheses, but they would be needed if we applied it to a type.

68 1. ACQUAINTANCE

6.1.4. Arrays as parameters. Yet another special case occurs for arrays as parameters
to functions. As we saw for the prototype of printf, such parameters may have empty
[]. Since no initializer is possible for such a parameter, the array dimension can’t be
determined.

Takeaway 1.6.1.12 The innermost dimension of an array parameter to a function is lost.

Takeaway 1.6.1.13 Don’t use the sizeof operator on array parameters to functions.

Array parameter are even more bizarre, because we cannot produce array values
(Takeaway 1.6.1.3), array parameters cannot be passed by value, and thus array param-
eters as such would not make much sense.

Takeaway 1.6.1.14 Array parameters behave as if the array is passed by referenceC .

Take the example shown in listing 6.1.

LISTING 6.1. A function with an array parameter
#include <stdio.h>

void swap_double(double a[static 2]) {
double tmp = a[0];
a[0] = a[1];
a[1] = tmp;

}
int main(void) {

double A[2] = { 1.0, 2.0, };
swap_double(A);
printf("A[0]␣=␣%g,␣A[1]␣=␣%g\n", A[0], A[1]);

}

Here, swap_double(A) will act directly on array A and not on a copy. Therefore, the
program will swap the values of the two elements of A.

CHALLENGE 6 (linear algebra). Some of the most important problems for which arrays
are used stem from linear algebra.
Can you write functions that do vector-to-vector or matrix-to-vector products at this point?
What about Gauß elimination or iterative algorithms for matrix inversion?

6.1.5. Strings are special. There is a special kind of array that we have encountered
several times and that, in contrast to other arrays, even has literals: stringsC .

Takeaway 1.6.1.15 A string is a 0-terminated array of char.

That is, a string like "hello" always has one more element than is visible, which
contains the value 0, so here the array has length 6.

Like all arrays, strings can’t be assigned to, but they can be initialized from string
literals:

char jay0[] = "jay";
char jay1[] = { "jay" };
char jay2[] = { 'j', 'a', 'y', 0, };
char jay3 [4] = { 'j', 'a', 'y', };

6. DERIVED DATA TYPES 69

These are all equivalent declarations. Be aware that not all arrays of char are strings, such
as

char jay4 [3] = { 'j', 'a', 'y', };
char jay5 [3] = "jay";

These both cut off after the 'y' character and so are not 0-terminated.

jay0

[0]

char 'j'

[1]

char 'a'

[2]

char 'y'

[3]

char '\0'

jay1

[0]

char 'j'

[1]

char 'a'

[2]

char 'y'

[3]

char '\0'

jay2

[0]

char 'j'

[1]

char 'a'

[2]

char 'y'

[3]

char '\0'

jay3

[0]

char 'j'

[1]

char 'a'

[2]

char 'y'

[3]

char '\0'

jay4

[0]

char 'j'

[1]

char 'a'

[2]

char 'y'

jay5

[0]

char 'j'

[1]

char 'a'

[2]

char 'y'

We briefly saw the base type char of strings among the integer types. It is a narrow
integer type that can be used to encode all characters of the basic character setC . This
character set contains all the characters of the Latin alphabet, Arabic digits, and punctu-
ation characters that we use for coding in C. It usually doesn’t contain special characters
(for example, ä, á), and characters from completely different writing systems).

The vast majority of platforms nowadays use American Standard Code for Information
Interchange (ASCII) to encode characters in the type char. We don’t have to know how
the particular encoding works as long as we stay in the basic character set: everything is
done in C and its standard library, which use this encoding transparently.

To deal with char arrays and strings, there are a bunch of functions in the standard
library that come with the header string.h. Those that just require an array argument start <string.h>

their names with mem, and those that in addition require that their arguments are strings start
with str. Listing 6.2 uses some of the functions that are described next.

Functions that operate on char arrays are as follows:
• memcpy(target, source, len) can be used to copy one array to another. These

have to be known to be distinct arrays. The number of char s to be copied must
be given as a third argument len.

• memcmp(s0, s1, len) compares two arrays in lexicographic order. That is, it
first scans the initial segments of the two arrays that happen to be equal and then
returns the difference between the two first characters that are distinct. If no
differing elements are found up to len, 0 is returned.

• memchr(s, c, len) searches array s for the appearance of character c.
Next are the string functions:
• strlen(s) returns the length of the string s. This is simply the position of the

first 0 character and not the length of the array. It is your duty to ensure that s is
indeed a string: that it is 0-terminated.

• strcpy(target, source) works similarly to memcpy. It only copies up to the
string length of the source, and therefore it doesn’t need a len parameter. Again,
source must be 0-terminated. Also, target must be big enough to hold the copy.

70 1. ACQUAINTANCE

LISTING 6.2. Using some of the string functions

1 #include <string.h>
2 #include <stdio.h>
3 int main(int argc , char* argv[argc +1]) {
4 size_t const len = strlen(argv [0]); // Computes the length
5 char name[len +1]; // Creates a VLA
6 // Ensures a place for 0
7 memcpy(name , argv[0], len); // Copies the name
8 name[len] = 0; // Ensures a 0 character
9 if (! strcmp(name , argv [0])) {

10 printf("program␣name␣\"%s\"␣successfully␣copied\n",
11 name);
12 } else {
13 printf("copying␣%s␣leads␣to␣different␣string␣%s\n",
14 argv[0], name);
15 }
16 }

• strcmp(s0, s1) compares two arrays in lexicographic order, similarly to memcmp,
but may not take some language specialties into account. The comparison stops
at the first 0 character that is encountered in either s0 or s1. Again, both param-
eters have to be 0-terminated.

• strcoll(s0, s1) compares two arrays in lexicographic order, respecting language-
specific environment settings. We will learn how to properly set this in subsec-
tion 8.6.

• strchr(s, c) is similar to memchr, only the string s must be 0-terminated.
• strspn(s0, s1) returns the length of the initial segment in s0 that consist of

characters that also appear in s1.
• strcspn(s0, s1) returns the length of the initial segment in s0 that consist of

characters that do not appear in s1.

Takeaway 1.6.1.16 Using a string function with a non-string has undefined behavior.

In real life, common symptoms for such misuse may be:
• Long times for strlen or similar scanning functions because they don’t en-

counter a 0-character
• Segmentation violations because such functions try to access elements after the

boundary of the array object
• Seemingly random corruption of data because the functions write data in places

where they are not supposed to
In other words, be careful, and make sure all your strings really are strings. If you know the
length of the character array, but you do not know if it is 0-terminated, memchr and pointer
arithmetic (see section 11) can be used as a safe replacement for strlen. Analogously, if
a character array is not known to be a string, is better to copy it by using memcpy.[Exs 41]

In the discussion so far, I have been hiding an important detail from you: the proto-
types of the functions. For the string functions, they can be written as

size_t strlen(char const s[static 1]);
char* strcpy(char target[static 1], char const source[static 1]);
signed strcmp(char const s0[static 1], char const s1[static 1]);
signed strcoll(char const s0[static 1], char const s1[static 1]);

[Exs 41]Use memchr and memcmp to implement a bounds-checking version of strcmp.

6. DERIVED DATA TYPES 71

char* strchr(const char s[static 1], int c);
size_t strspn(const char s1[static 1], const char s2[static 1]);
size_t strcspn(const char s1[static 1], const char s2[static 1]);

Other than the bizarre return type of strcpy and strchr, this looks reasonable. The pa-
rameter arrays are arrays of unknown length, so the [static 1] s correspond to arrays of
at least one char. strlen, strspn, and strcspn will return a size, and strcmp will return
a negative, 0, or positive value according to the sort order of the arguments.

The picture darkens when we look at the declarations of the array functions:

void* memcpy(void* target , void const* source , size_t len);
signed memcmp(void const* s0, void const* s1, size_t len);
void* memchr(const void *s, int c, size_t n);

You are missing knowledge about entities that are specified as void*. These are point-
ers to objects of unknown type. It is only in level 2, section 11, that we will see why and
how these new concepts of pointers and void type occur.

CHALLENGE 7 (Adjacency matrix). The adjacency matrix of a graph G is a matrix A that
holds a value true or false in element A[i][j] if there is an arc from node i to node j.
At this point, can you use an adjacency matrix to conduct a breadth-first search in a graph
G? Can you find connected components? Can you find a spanning tree?

CHALLENGE 8 (Shortest path). Extend the idea of an adjacency matrix of a graph G to
a distance matrix D that holds the distance when going from point i to point j. Mark the
absence of a direct arc with a very large value, such as SIZE_MAX.
Can you find the shortest path between two nodes x and y given as an input?

6.2. Pointers as opaque types. We now have seen the concept of pointers pop up in
several places, in particular as a void* argument and return type, and as char const*const
to manipulate references to string literals. Their main property is that they do not directly
contain the information that we are interested in: rather, they refer, or point, to the data.
C’s syntax for pointers always has the peculiar *:

char const*const p2string = "some␣text";

It can be visualized like this:

p2string char const*const

↓
"some␣text"

Compare this to the earlier array jay0, which itself contains all the characters of the string
that we want it to represent:

char jay0[] = "jay";

72 1. ACQUAINTANCE

jay0

[0]

char 'j'

[1]

char 'a'

[2]

char 'y'

[3]

char '\0'

In this first exploration, we only need to know some simple properties of pointers. The
binary representation of a pointer is completely up to the platform and is not our business.

Takeaway 1.6.2.1 Pointers are opaque objects.

This means we will only be able to deal with pointers through the operations that the
C language allows for them. As I said, most of these operations will be introduced later; in
our first attempt, we will only need initialization, assignment, and evaluation.

One particular property of pointers that distinguishes them from other variables is their
state.

Takeaway 1.6.2.2 Pointers are valid, null, or indeterminate.

For example, our variable p2string is always valid, because it points to the string
literal "some␣text", and, because of the second const, this association can never be
changed.

The null state of any pointer type corresponds to our old friend 0, sometimes known
under its pseudonym false.

Takeaway 1.6.2.3 Initialization or assignment with 0 makes a pointer null.

Take the following as an example:

char const*const p2nothing = 0;

We visualize this special situation like this:

p2nothing char const*const

↓
6

Note that this is different from pointing to an empty string:

char const*const p2empty = "";

p2empty char const*const

↓
""

Usually, we refer to a pointer in the null state as a null pointerC . Surprisingly, disposing
of null pointers is really a feature.

Takeaway 1.6.2.4 In logical expressions, pointers evaluate to false if they are null.

Note that such tests can’t distinguish valid pointers from indeterminate ones. So, the
really “bad” state of a pointer is indeterminate, since this state is not observable.

Takeaway 1.6.2.5 Indeterminate pointers lead to undefined behavior.

An example of an indeterminate pointer could look like this:

char const*const p2invalid;

6. DERIVED DATA TYPES 73

p2invalid char const*const

↓

Because it is uninitialized, its state is indeterminate, and any use of it would do you harm
and leave your program in an undefined state (takeaway 1.5.7.7). Thus, if we can’t ensure
that a pointer is valid, we must at least ensure that it is set to null.

Takeaway 1.6.2.6 Always initialize pointers.

6.3. Structures. As we have seen, arrays combine several objects of the same base
type into a larger object. This makes perfect sense where we want to combine information
for which the notion of a first, second, . . . element is acceptable. If it is not, or if we have
to combine objects of different type, then structures, introduced by the keyword struct
come into play.

As a first example, let us revisit the corvids from section 5.6.2. There, we used a trick
with an enumeration type to keep track of our interpretation of the individual elements
of an array name. C structures allow for a more systematic approach by giving names to
so-called members (or field) in an aggregate:

struct birdStruct {
char const* jay;
char const* magpie;
char const* raven;
char const* chough;

};
struct birdStruct const aName = {

.chough = "Henry",

.raven = "Lissy",

.magpie = "Frau",

.jay = "Joe",
};

That is, from line 1 to 6, we have the declaration of a new type, denoted as struct
birdStruct. This structure has four membersC , whose declarations look exactly like nor-
mal variable declarations. So instead of declaring four elements that are bound together in
an array, here we name the different members and declare types for them. Such declaration
of a structure type only explains the type; it is not (yet) the declaration of an object of that
type and even less a definition for such an object.

Then, starting on line 7, we declare and define a variable (called aName) of the new
type. In the initializer and in later usage, the individual members are designated using a
notation with a dot (.). Instead of bird[raven], as in subsection 5.6.1, for the array we
use aName.raven for the structure:

aName
struct birdStruct

.jay

char const*

.magpie

char const*

.raven

char const*

.chough

char const*

↓ ↓ ↓ ↓
"Joe" "Frau" "Lissy" "Henry"

Please note that in this example, the individual members again only refer to the strings.
For example, the member aName.magpie refers to an entity "Frau" that is located outside
the box and is not considered part of the struct itself.

Now, for a second example, let us look at a way to organize time stamps. Calendar
time is an complicated way of counting, in years, month, days, minutes, and seconds; the

74 1. ACQUAINTANCE

different time periods such as months or years can have different lengths, and so on. One
possible to organize such data could be an array:

typedef int calArray [9];

calArray

[0]

int ??

[1]

int ??

[3]

int ??

[4]

int ?? · · ·
[8]

int ??

The use of this array type would be ambiguous: would we store the year in element
[0] or [5]? To avoid ambiguities, we could again use our trick with an enum. But the C
standard has chosen a different way. In time.h, it uses a struct that looks similar to the<time.h>

following:

struct tm {
int tm_sec; // Seconds after the minute [0, 60]
int tm_min; // Minutes after the hour [0, 59]
int tm_hour; // Hours since midnight [0, 23]
int tm_mday; // Day of the month [1, 31]
int tm_mon; // Months since January [0, 11]
int tm_year; // Years since 1900
int tm_wday; // Days since Sunday [0, 6]
int tm_yday; // Days since January [0, 365]
int tm_isdst;// Daylight Saving Time flag

};

This struct has named members, such as tm_sec for the seconds and tm_year for
the year. Encoding a date, such as the date of this writing

Terminal

0 > LC_TIME=C date -u

1 Wed Apr 3 10:00:47 UTC 2019

is relatively simple:

. yday.c

29 struct tm today = {
30 .tm_year = 2019-1900,
31 .tm_mon = 4-1,
32 .tm_mday = 3,
33 .tm_hour = 10,
34 .tm_min = 0,
35 .tm_sec = 47,
36 };

This creates a variable of type struct tm and initializes its members with the appro-
priate values. The order or position of the members in the structure usually is not important:
using the name of the member preceded with a dot . suffices to specify where the corre-
sponding data should go.

today struct tm

.tm_sec

int 5

.tm_min

int 7

.tm_hour

int 16

.tm_mday

int 29 · · ·
.tm_isdst

int 0

Note that this visualization of today has an extra “box” compared to calArray. In-
deed, a proper struct type creates an additional level of abstraction. This struct tm is a
proper type in C’s type system.

6. DERIVED DATA TYPES 75

Accessing the members of the structure is just as simple and has similar . syntax:

. yday.c

37 printf("this␣year␣is␣%d,␣next␣year␣will␣be␣%d\n",
38 today.tm_year +1900, today.tm_year +1900+1);

A reference to a member such as today.tm_year can appear in an expression just like
any variable of the same base type.

There are three other members in struct tm that we didn’t even mention in our ini-
tializer list: tm_wday, tm_yday, and tm_isdst. Since we didn’t mention them, they are
automatically set to 0.

Takeaway 1.6.3.1 Omitted struct initializers force the corresponding member to 0.

This can even go to the extreme that all but one of the members are initialized.

Takeaway 1.6.3.2 A struct initializer must initialize at least one member.

Previously (takeaway 1.5.5.3), we saw that there is a default initializer that works for
all data types: {0}.

So when we initialize struct tm as we did here, the data structure is not consistent;
the tm_wday and tm_yday members don’t have values that would correspond to the values
of the remaining members. A function that sets this member to a value that is consistent
with the others could be something like

. yday.c

19 struct tm time_set_yday(struct tm t) {
20 // tm_mdays starts at 1.
21 t.tm_yday += DAYS_BEFORE[t.tm_mon] + t.tm_mday - 1;
22 // Takes care of leap years
23 if ((t.tm_mon > 1) && leapyear(t.tm_year +1900))
24 ++t.tm_yday;
25 return t;
26 }

It uses the number of days of the months preceding the current one, the tm_mday mem-
ber, and an eventual corrective for leap years to compute the day in the year. This function
has a particularity that is important at our current level: it modifies only the member of the
parameter of the function, t, and not of the original object.

Takeaway 1.6.3.3 struct parameters are passed by value.

To keep track of the changes, we have to reassign the result of the function to the
original:

. yday.c

39 today = time_set_yday(today);

Later, with pointer types, we will see how to overcome that restriction for functions,
but we are not there yet. Here we see that the assignment operator = is well defined for all
structure types. Unfortunately, its counterparts for comparisons are not.

Takeaway 1.6.3.4 Structures can be assigned with = but not compared with == or !=.

Listing 6.3 shows the complete example code for the use of struct tm. It doesn’t
contain a declaration of the historical struct tm since this is provided through the stan-
dard header time.h. Nowadays, the types for the individual members would probably be

<time.h>

chosen differently. But many times in C we have to stick with design decisions that were
made many years ago.

76 1. ACQUAINTANCE

LISTING 6.3. A sample program manipulating struct tm

1 #include <time.h>
2 #include <stdbool.h>
3 #include <stdio.h>
4
5 bool leapyear(unsigned year) {
6 /* All years that are divisible by 4 are leap years ,
7 unless they start a new century , provided they
8 are not divisible by 400. */
9 return !(year % 4) && ((year % 100) || !(year % 400));

10 }
11
12 #define DAYS_BEFORE \
13 (int const [12]){ \
14 [0] = 0, [1] = 31, [2] = 59, [3] = 90, \
15 [4] = 120, [5] = 151, [6] = 181, [7] = 212, \
16 [8] = 243, [9] = 273, [10] = 304, [11] = 334, \
17 }
18
19 struct tm time_set_yday(struct tm t) {
20 // tm_mdays starts at 1.
21 t.tm_yday += DAYS_BEFORE[t.tm_mon] + t.tm_mday - 1;
22 // Takes care of leap years
23 if ((t.tm_mon > 1) && leapyear(t.tm_year +1900))
24 ++t.tm_yday;
25 return t;
26 }
27
28 int main(void) {
29 struct tm today = {
30 .tm_year = 2019-1900,
31 .tm_mon = 4-1,
32 .tm_mday = 3,
33 .tm_hour = 10,
34 .tm_min = 0,
35 .tm_sec = 47,
36 };
37 printf("this␣year␣is␣%d,␣next␣year␣will␣be␣%d\n",
38 today.tm_year +1900, today.tm_year +1900+1);
39 today = time_set_yday(today);
40 printf("day␣of␣the␣year␣is␣%d\n", today.tm_yday);
41 }

Takeaway 1.6.3.5 A structure layout is an important design decision.

You may regret your design after some years, when all the existing code that uses it
makes it almost impossible to adapt it to new situations.

Another use of struct is to group objects of different types together in one larger
enclosing object. Again, for manipulating times with a nanosecond granularity, the C
standard already has made that choice:

struct timespec {
time_t tv_sec; // Whole seconds ≥ 0

long tv_nsec; // Nanoseconds [0, 999999999]
};

6. DERIVED DATA TYPES 77

struct timespec

.tv_sec

time_t ??

.tv_nsec

long ??

Here we see the opaque type time_t that we saw in table 5.2 for the seconds, and a
long for the nanoseconds.42 Again, the reasons for this choice are historical; nowadays
the chosen types would perhaps be a bit different. To compute the difference between two
struct timespec times, we can easily define a function.

Whereas the function difftime is part of the C standard, such functionality here is
very simple and isn’t based on platform-specific properties. So it can easily be imple-
mented by anyone who needs it.[Exs 43]

Any data type other than a VLA is allowed as a member in a structure. So structures
can also be nested in the sense that a member of a struct can again be of (another) struct
type, and the smaller enclosed structure may even be declared inside the larger one:

struct person {
char name [256];
struct stardate {

struct tm date;
struct timespec precision;

} bdate;
};

struct person
.name

[0]

char ??

[1]

char ?? · · · · · ·
[255]

char ??

.bdate

struct stardate
.date

struct tm

.tm_sec

int ??

.tm_min

int ??

.tm_hour

int ??

.tm_mday

int ?? · · ·
.tm_isdst

int ??

.precision

struct timespec

.tv_sec

time_t ??

.tv_nsec

long ??

The visibility of declaration struct stardate is the same as for struct person. A
struct itself (here, person) defines no new scope for a struct (here, stardate) that is
defined within the {} of the outermost struct declaration. This may be much different
from the rules of other programming languages, such as C++.

Takeaway 1.6.3.6 All struct declarations in a nested declaration have the same scope
of visibility.

That is, if the previous nested struct declarations appear globally, both struct s are
subsequently visible for the whole C file. If they appear inside a function, their visibility is
bound to the {} block in which they are found.

So, a more adequate version would be as follows:

42Unfortunately, even the semantics of time_t are different here. In particular, tv_sec may be used in
arithmetic.

[Exs 43]Write a function timespec_diff that computes the difference between two timespec values.

78 1. ACQUAINTANCE

struct stardate {
struct tm date;
struct timespec precision;

};
struct person {

char name [256];
struct stardate bdate;

};

This version places all struct s on the same level, because they end up there, anyhow.

6.4. New names for types: type aliases. As we saw in the previous section, a struc-
ture not only introduces a way to aggregate differing information into one unit, but also
introduces a new type name for the beast. For historical reasons (again!), the name that we
introduce for the structure always has to be preceded by the keyword struct, which makes
its use a bit clumsy. Also, many C beginners run into difficulties with this when they forget
the struct keyword and the compiler throws an incomprehensible error at them.

There is a general tool that can help us avoid that, by giving a symbolic name to an
otherwise existing type: typedef. Using it, a type can have several names, and we can
even reuse the tag nameC that we used in the structure declaration:

typedef struct birdStruct birdStructure;
typedef struct birdStruct birdStruct;

Then, struct birdStruct, birdStruct, and birdStructure can all be used interchange-
ably. My favorite use of this feature is the following idiom:

typedef struct birdStruct birdStruct;
struct birdStruct {

...
};

That is, to precede the proper struct declaration by a typedef using exactly the same
name. This works because in the combination of struct with a following name, the tagC
is always valid, a forward declarationC of the structure.

Takeaway 1.6.4.1 Forward-declare a struct within a typedef using the same identifier
as the tag name.

C++ follows a similar approach by default, so this strategy will make your code easier
to read for people who come from there.

The typedef mechanism can also be used for types other than structures. For arrays,
this could look like

typedef double vector [64];
typedef vector vecvec [16];
vecvec A;
typedef double matrix [16][64];
matrix B;
double C[16][64];

Here, typedef only introduces a new name for an existing type, so A, B, and C have exactly
the same type: double[16][64].

Takeaway 1.6.4.2 A typedef only creates an alias for a type, but never a new type.

The C standard also uses typedef a lot internally. The semantic integer types such
as size_t that we saw in subsection 5.2 are declared with this mechanism. The standard

SUMMARY 79

often uses names that terminate with _t for typedef. This naming convention ensures that
the introduction of such a name in an upgraded version of the standard will not conflict
with existing code. So you shouldn’t introduce such names yourself in your code.

Takeaway 1.6.4.3 Identifier names terminating with _t are reserved.

Summary

• Arrays combine several values of the same base type into one object.
• Pointers refer to other objects, are null, or are indeterminate.
• Structures combine values of different base types into one object.
• typedefs provide new names for existing types.

80 1. ACQUAINTANCE

7. Functions

This section covers
• Introduction to simple functions
• Working with main
• Understanding recursion

We have already seen the different means that C offers for conditional execution: exe-
cution that, based on a value, chooses one branch of the program over another to continue.
The reason for a potential “jump” to another part of the program code (for example, to
an else branch) is a runtime decision that depends on runtime data. This section starts
with a discussion of unconditional ways to transfer control to other parts of our code: by
themselves, they do not require any runtime data to decide where to go.

The code examples we have seen so far often used functions from the C library that
provided features we did not want (or were not able) to implement ourselves, such as
printf for printing and strlen for computing the length of a string. The idea behind this
concept of functions is that they implement a certain feature, once and for all, and that we
then can rely on that feature in the rest of our code.

A function for which we have seen several definitions is main, the entry point of
execution into a program. In this section, we will look at how to write functions ourselves
that may provide features just like the functions in the C library.

The main reasons motivating the concept of functions are modularity and code factor-
ization:

• Functions avoid code repetition. In particular they avoid easily introduced copy-
and-paste errors and spare the effort of editing in multiple places if you modify a
piece of functionality. Thereby, functions increase readability and maintainabil-
ity.

• Use of functions decreases compilation times. A given code snippet that we
encapsulate in a function is compiled only once, not at each point where it is
used.

• Functions simplify future code reuse. Once we have extracted code into a func-
tion that provides certain functionality, it can easily be applied in other places
that we did not even think of when implementing the function.

• Functions provide clear interfaces. Function arguments and return types clearly
specify the origin and type of data that flows into and out of a computation.
Additionally, functions allow us to specify invariants for a computation: pre-
and post-conditions.

• Functions provide a natural way to formulate algorithms that use a “stack” of
intermediate values.

In addition to functions, C has other means of unconditional transfer of control, which
are mostly used to handle error conditions or other forms of exceptions from the usual
control flow:

• exit, _Exit, quick_exit, and abort terminate the program execution (see sub-
section 8.7).

• goto transfers control within a function body (see subsections 13.2.2 and 14.5).
• setjmp and longjmp can be used to return unconditionally to a calling context

(see subsection 17.5).
• Certain events in the execution environment or calls to the function raise may

raise signals that pass control to a specialized function, a signal handler.

7.1. Simple functions. We have used a lot of functions and seen some their decla-
rations (for example in section 6.1.5) and definitions (such as listing 6.3). In all of these
functions, parentheses () play an important syntactical role. They are used for function

7. FUNCTIONS 81

declarations and definitions, to encapsulate the list of parameter declarations. For function
calls, they hold the list of arguments for that concrete call. This syntactic role is similar
to [] for arrays: in declarations and definitions, they contain the size of the corresponding
dimension. In a designation like A[i], they are used to indicate the position of the accessed
element in the array.

All the functions we have seen so far have a prototypeC : their declaration and def-
inition, including a parameter type-list and a return type. To see that, let us revisit the
leapyear function from listing 6.3:

. yday.c

5 bool leapyear(unsigned year) {
6 /* All years that are divisible by 4 are leap years ,
7 unless they start a new century , provided they
8 are not divisible by 400. */
9 return !(year % 4) && ((year % 100) || !(year % 400));

10 }

A declaration of that function (without a definition) could look as follows:

bool leapyear(unsigned year);

Alternatively, we could even omit the name of the parameter and/or add the storage speci-
fier extern:44

extern bool leapyear(unsigned);

Important for such a declaration is that the compiler sees the types of the argument(s) and
the return type, so here the prototype of the function is “function receiving an unsigned
and returning an bool.”

There are two special conventions that use the keyword void:
• If the function is to be called with no parameter, the list is replaced by the key-

word void, like main in our very first example (listing 1.1).
• If the function doesn’t return a value, the return type is given as void: for exam-

ple, swap_double.
Such a prototype helps the compiler in places where the function is to be called. It only
has to know about the parameters the function expects. Have a look at the following:

extern double fbar(double);

...
double fbar2 = fbar (2)/2;

Here, the call fbar(2) is not directly compatible with the expectation of function
fbar: it wants a double but receives a signed int. But since the calling code knows
this, it can convert the signed int argument 2 to the double value 2.0 before calling the
function. The same holds for the use of the return value in an expression: the caller knows
that the return type is double, so floating-point division is applied for the result expression.

C has obsolete ways to declare functions without prototype, but you will not see them
here. You shouldn’t use them; they will be retired in future versions.

Takeaway 1.7.1.1 All functions must have prototypes.

A notable exception to that rule are functions that can receive a varying number of pa-
rameters, such as printf. They use a mechanism for parameter handling called a variable
argument listC , which comes with the header stdargs.h. <stdargs.h>

44More details on the keyword extern will be provided in subsection 13.2.

82 1. ACQUAINTANCE

We will see later (subsection 16.5.2) how this works, but this feature is to be avoided
in any case. Already from your experience with printf you can imagine why such an
interface poses difficulties. You, as the programmer of the calling code, have to ensure
consistency by providing the correct "%XX" format specifiers.

In the implementation of a function, we must watch that we provide return values for
all functions that have a non-void return type. There can be several return statements in
a function:

Takeaway 1.7.1.2 Functions have only one entry but can have several return s.

All return s in a function must be consistent with the function declaration. For a
function that expects a return value, all return statements must contain an expression;
functions that expect none, mustn’t contain expressions.

Takeaway 1.7.1.3 A function return must be consistent with its type.

But the same rule as for the parameters on the calling side holds for the return value.
A value with a type that can be converted to the expected return type will be converted
before the return happens.

If the type of the function is void, the return (without expression) can even be omit-
ted:

Takeaway 1.7.1.4 Reaching the end of the {} block of a function is equivalent to a
return statement without an expression.

Because otherwise a function that returns a value would have an indeterminate value
to return, this construct is only allowed for functions that do not return a value:

Takeaway 1.7.1.5 Reaching the end of the {} block of a function is only allowed for
void functions.

7.2. main is special. Perhaps you have noted some particularities about main. It has
a very special role as the entry point into your program: its prototype is enforced by the
C standard, but it is implemented by the programmer. Being such a pivot between the
runtime system and the application, main has to obey some special rules.

First, to suit different needs, it has several prototypes, one of which must be imple-
mented. Two should always be possible:

int main(void);
int main(int argc , char* argv[argc +1]);

Then, any C platform may provide other interfaces. Two variations are relatively common:
• On some embedded platforms where main is not expected to return to the runtime

system, the return type may be void.
• On many platforms, a third parameter can give access to the “environment.”

You should not rely on the existence of such other forms. If you want to write portable
code (which you do), stick to the two “official” forms. For these, the return value of
int gives an indication to the runtime system if the execution was successful: a value
of EXIT_SUCCESS or EXIT_FAILURE indicates success or failure of the execution from the
programmer’s point of view. These are the only two values that are guaranteed to work on
all platforms.

Takeaway 1.7.2.1 Use EXIT_SUCCESS and EXIT_FAILURE as return values for main.

7. FUNCTIONS 83

In addition, there is a special exception for main, as it is not required to have an explicit
return statement:

Takeaway 1.7.2.2 Reaching the end of main is equivalent to a return with value EXIT_SUCCESS.

Personally, I am not much of a fan of such exceptions without tangible gain; they just make
arguments about programs more complicated.

The library function exit has a special relationship with main. As the name indicates,
a call to exit terminates the program. The prototype is as follows:

_Noreturn void exit(int status);

This functions terminates the program exactly as a return from main would. The
status parameter has the role that the return expression in main would have.

Takeaway 1.7.2.3 Calling exit(s) is equivalent to the evaluation of return s in main.

We also see that the prototype of exit is special because it has a void type. Just like
a return statement, exit never fails.

Takeaway 1.7.2.4 exit never fails and never returns to its caller.

The latter is indicated by the special keyword _Noreturn. This keyword should only
be used for such special functions. There is even a pretty-printed version of it, the macro
noreturn, which comes with the header stdnoreturn.h. <stdnoreturn.h>

There is another feature in the second prototype of main: argv, the vector of command-
line arguments. We looked at some examples where we used this vector to communicate
values from the command line to the program. For example, in listing 3.1, these command-
line arguments were interpreted as double data for the program:

argv

[0]

char*

[1]

char* · · ·
[argc]

char*

↓ ↓ ↓
"./heron" "0.785" · · · 6

So each of the argv[i] for i = 0, . . . , argc is a pointer similar to those we encoun-
tered earlier. As an easy first approximation, we can see them as strings.

Takeaway 1.7.2.5 All command-line arguments are transferred as strings.

It is up to us to interpret them. In the example, we chose the function strtod to decode
a double value that was stored in the string.

Of the argv strings, two elements hold special values:

Takeaway 1.7.2.6 Of the arguments to main, argv[0] holds the name of the program
invocation.

There is no strict rule about what program name should be, but usually it is the name
of the program executable.

Takeaway 1.7.2.7 Of the arguments to main, argv[argc] is 0.

In the argv array, the last argument could always be identified using this property, but
this feature isn’t very useful: we have argc to process that array.

84 1. ACQUAINTANCE

7.3. Recursion. An important feature of functions is encapsulation: local variables
are only visible and alive until we leave the function, either via an explicit return or
because execution falls out of the last enclosing brace of the function’s block. Their iden-
tifiers (names) don’t conflict with other similar identifiers in other functions, and once we
leave the function, all the mess we leave behind is cleaned up.

Even better: whenever we call a function, even one we have called before, a new set of
local variables (including function parameters) is created, and these are newly initialized.
This also holds if we newly call a function for which another call is still active in the
hierarchy of calling functions. A function that directly or indirectly calls itself is called
recursive, and the concept is called recursion.

Recursive functions are crucial for understanding C functions: they demonstrate and
use primary features of the function call model and are only fully functional with these
features. As a first example, we will look at an implementation of Euclid’s algorithm to
compute the greatest common divisor (gcd) of two numbers:

. euclid.h

8 size_t gcd2(size_t a, size_t b) {
9 assert(a <= b);

10 if (!a) return b;
11 size_t rem = b % a;
12 return gcd2(rem , a);
13 }

As you can see, this function is short and seemingly nice. But to understand how
it works, we need to thoroughly understand how functions work, and how we transform
mathematical statements into algorithms.

Given two integers a, b > 0, the gcd is defined as the greatest integer c > 0 that
divides into both a and b. Here is the formula:

gcd(a, b) = max{c ∈ N | c|a and c|b}
If we also assume that a < b, we can easily see that two recursive formulas hold:

gcd(a, b) = gcd(a, b− a)(2)

gcd(a, b) = gcd(a, b%a)(3)

That is, the gcd doesn’t change if we subtract the smaller integer or if we replace the larger
of the two with the modulus of the other. These formulas have been used to compute the
gcd since the days of ancient Greek mathematics. They are commonly attributed to Euclid
(Εὐκλείδης, around 300 B.C.) but may have been known even before him.

Our C function gcd2 uses equation (3). First (line 9), it checks if a precondition for
the execution of this function is satisfied: whether the first argument is less than or equal to
the second. It does this by using the assert macro from assert.h. This would abort the<assert.h>

program with an informative message if the function was called with arguments that didn’t
satisfy that condition (we will see more explanations of assert in subsection 8.7).

Takeaway 1.7.3.1 Make all preconditions for a function explicit.

Then, line 10 checks whether a is 0, in which case it returns b. This is an important
step in a recursive algorithm:

Takeaway 1.7.3.2 In a recursive function, first check the termination condition.

A missing termination check leads to infinite recursion; the function repeatedly calls
new copies of itself until all system resources are exhausted and the program crashes. On
modern systems with large amounts of memory, this may take some time, during which
the system will be completely unresponsive. You’d better not try it.

7. FUNCTIONS 85

FIGURE 7.1. Recursive call gcd2(18, 30)

Call level 0
a = 18
b = 30
!a =⇒ false
rem = 12
gcd2(12, 18) =⇒

Call level 1
a = 12
b = 18
!a =⇒ false
rem = 6
gcd2(6, 12) =⇒

Call level 2
a = 6
b = 12
!a =⇒ false
rem = 0
gcd2(0, 6) =⇒

Call level 3
a = 0
b = 6
!a =⇒ true

⇐= 6 return 6
⇐= 6 return 6

⇐= 6 return 6
return 6

Otherwise, we compute the remainder rem of b modulo a (line 11). Then the function
is called recursively with rem and a, and the return value of that is directly returned.

Figure 7.1 shows an example of the different recursive calls that are issued from an ini-
tial call gcd2(18, 30). Here, the recursion goes four levels deep. Each level implements
its own copies of the variables a, b, and rem.

For each recursive call, modulo arithmetic (takeaway 1.4.1.7) guarantees that the pre-
condition is always fulfilled automatically. For the initial call, we have to ensure this
ourselves. This is best done by using a different function, a wrapperC :

. euclid.h

15 size_t gcd(size_t a, size_t b) {
16 assert(a);
17 assert(b);
18 if (a < b)
19 return gcd2(a, b);
20 else
21 return gcd2(b, a);
22 }

Takeaway 1.7.3.3 Ensure the preconditions of a recursive function in a wrapper func-
tion.

This avoids having to check the precondition at each recursive call: the assert macro is
such that it can be disabled in the final production object file.

86 1. ACQUAINTANCE

Another famous example of a recursive definition of an integer sequence are Fibon-
nacci numbers, a sequence of numbers that appeared as early as 200 B.C. in Indian texts.
In modern terms, the sequence can be defined as

F1 = 1(4)
F2 = 1(5)
Fi = Fi−1 + Fi−2 for all i > 2(6)

The sequence of Fibonacci numbers is fast-growing. Its first elements are 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89, 144, 377, 610, 987.
With the golden ratio

ϕ =
1 +
√

5

2
= 1.61803...(7)

it can be shown that

Fn =
ϕn − (−ϕ)−n√

5
(8)

and so, asymptotically, we have

Fn ≈
ϕn√

5
(9)

So the growth of Fn is exponential.
The recursive mathematical definition can be translated in a straightforward manner

into a C function:

. fibonacci.c

4 size_t fib(size_t n) {
5 if (n < 3)
6 return 1;
7 else
8 return fib(n-1) + fib(n-2);
9 }

Here, again, we first check for the termination condition: whether the argument to the
call, n, is less than 3. If it is, the return value is 1; otherwise we return the sum of calls with
argument values n-1 and n-2.

Figure 7.2 shows an example of a call to fib with a small argument value. We see
that this leads to three levels of stacked calls to the same function with different arguments.
Because equation (6) uses two different values of the sequence, the scheme of the recursive
calls is much more involved than the one for gcd2. In particular, there are three leaf calls:
calls to the function that fulfill the termination condition, and thus by themselves not go
into recursion. [Exs 45]

Implemented like that, the computation of the Fibonacci numbers is quite slow. [Exs 46]

In fact, it is easy to see that the recursive formula for the function itself also leads to an
analogous formula for the function’s execution time:

Tfib(1) = C0(10)
Tfib(2) = C0(11)
Tfib(i) = Tfib(i-1) + Tfib(i-2) + C1 for all i > 3(12)

where C0 and C1 are constants that depend on the platform.

[Exs 45]Show that a call fib(n) induces Fn leaf calls.
[Exs 46]Measure the times for calls to fib(n) with n set to different values. On POSIX systems, you can use
/bin/time to measure the run time of a program’s execution.

7. FUNCTIONS 87

FIGURE 7.2. Recursive call fib(4)
Call level 0
n = 4
n<3 =⇒ false
fib(3) =⇒

Call level 1
n=3
n<3 =⇒ false
fib(2) =⇒

Call level 2
n=2
n<3 =⇒ true

⇐= 1 return 1

fib(1) =⇒
Call level 2
n=1
n<3 =⇒ true

⇐= 1 return 1
⇐= 2 return 1 + 1

fib(2) =⇒
Call level 1
n=2
n<3 =⇒ true

⇐= 1 return 1
return 2 + 1

It follows that regardless of the platform and the cleverness of our implementation, the
function’s execution time will always be something like

Tfib(n) = Fn(C0 + C1) ≈ ϕn · C0 + C1√
5

= ϕn · C2(13)

with another platform-dependent constant C2. So the execution time of fib(n) is expo-
nential in n, which usually rules out using such a function in practice.

Takeaway 1.7.3.4 Multiple recursion may lead to exponential computation times.

If we look at the nested calls in table 7.2, we see that we have the call fib(2)
twice, and thus all the effort to compute the value for fib(2) is repeated. The following
fibCacheRec function avoids such repetitions. It receives an additional argument, cache,
which is an array that holds all values that have already been computed:

. fibonacciCache.c

4 /* Compute Fibonacci number n with the help of a cache that may
5 hold previously computed values. */
6 size_t fibCacheRec(size_t n, size_t cache[n]) {
7 if (!cache[n-1]) {
8 cache[n-1]
9 = fibCacheRec(n-1, cache) + fibCacheRec(n-2, cache);

10 }
11 return cache[n-1];
12 }

88 1. ACQUAINTANCE

13
14 size_t fibCache(size_t n) {
15 if (n+1 <= 3) return 1;
16 /* Set up a VLA to cache the values. */
17 size_t cache[n];
18 /* A VLA must be initialized by assignment. */
19 cache [0] = 1; cache [1] = 1;
20 for (size_t i = 2; i < n; ++i)
21 cache[i] = 0;
22 /* Call the recursive function. */
23 return fibCacheRec(n, cache);
24 }

By trading storage against computation time, the recursive calls are affected only if
the value has not yet been computed. Thus the fibCache(i) call has an execution time
that is linear in n

TfibCache(n) = n · C3(14)

for a platform-dependent parameter C3.[Exs 47] Just by changing the algorithm that
implements our sequence, we are able to reduce the execution time from exponential to
linear! We didn’t (and wouldn’t) discuss implementation details, nor did we perform con-
crete measurements of execution time. [Exs 48]

Takeaway 1.7.3.5 A bad algorithm will never lead to a implementation that performs
well.

Takeaway 1.7.3.6 Improving an algorithm can dramatically improve performance.

For the fun of it, fib2Rec shows a third implemented algorithm for the Fibonacci
sequence. It gets away with a fixed-length array (FLA) instead of a variable-length array
(VLA).

. fibonacci2.c

4 void fib2rec(size_t n, size_t buf [2]) {
5 if (n > 2) {
6 size_t res = buf[0] + buf [1];
7 buf[1] = buf [0];
8 buf[0] = res;
9 fib2rec(n-1, buf);

10 }
11 }
12
13 size_t fib2(size_t n) {
14 size_t res[2] = { 1, 1, };
15 fib2rec(n, res);
16 return res [0];
17 }

Proving that this version is still correct is left as an exercise.[Exs 49] Also, up to now we
have only had rudimentary tools to assess whether this is “faster” in any sense we might
want to give the term.[Exs 50]

[Exs 47]Prove equation (14).
[Exs 48]Measure times for fibCache(n) call with the same values as for fib.
[Exs 49]Use an iteration statement to transform fib2rec into a nonrecursive function fib2iter.

[Exs 50]Measure times for fib2(n) calls with the same values as fib .

SUMMARY 89

CHALLENGE 9 (factorization). Now that we’ve covered functions, see if you can imple-
ment a program factor that receives a number N on the command line and prints out

N: F0 F1 F2 ...

where F0 and so on are all the prime factors of N.
The core of your implementation should be a function that, given a value of type size_t,
returns its smallest prime factor.
Extend this program to receive a list of such numbers and output such a line for each of
them.

Summary

• Functions have a prototype that determines how they can be called.
• Terminating main and calling exit are the same.
• Each function call has its own copy of local variables and can be called recur-

sively.

90 1. ACQUAINTANCE

8. C library functions

This section covers

• Doing math, handling files, and processing strings
• Manipulating time
• Managing the runtime environment
• Terminating programs

The functionality that the C standard provides is separated into two big parts. One is
the proper C language, and the other is the C library. We have looked at several functions
that come with the C library, including printf, puts, and strtod, so you should have a
good idea what to expect: basic tools that implement features that we need in everyday
programming and for which we need clear interfaces and semantics to ensure portability.

On many platforms, the clear specification through an application programming inter-
face (API) also allows us to separate the compiler implementation from the library imple-
mentation. For example, on Linux systems, we have a choice of different compilers, most
commonly gcc and clang, and different C library implementations, such as the GNU C li-
brary (glibc), dietlibc, or musl; potentially, any of these choices can be used to produce
an executable.

We will first discuss the general properties and tools of the C library and its inter-
faces, and then describe some groups of functions: mathematical (numerical) functions,
input/output functions, string processing, time handling, access to the runtime environ-
ment, and program termination.

8.1. General properties of the C library and its functions. Roughly, library func-
tions target one or two purposes:

Platform abstraction layer. Functions that abstract from the specific properties and
needs of the platform. These are functions that need platform-specific bits to implement
basic operations such as IO, which could not be implemented without deep knowledge of
the platform. For example, puts has to have some concept of a “terminal output” and how
to address it. Implementing these functionalities would exceed the knowledge of most C
programmers, because doing so requires OS- or even processor-specific magic. Be glad
that some people did that job for you.

Basic tools. Functions that implement a task (such as strtod) that often occurs in
programming in C and for which it is important that the interface is fixed. These should
be implemented relatively efficiently, because they are used a lot, and they should be well
tested and bug free so we can rely safely on them. Implementing such functions should in
principle be possible for any confirmed C programmer.[Exs 51]

A function like printf can be viewed as targeting both purposes: it can effectively be
separated into a formatting phase providing a basic tool and an output phase that is platform
specific. There is a function snprintf (explained much later, in subsection 14.1) that
provides the same formatting functionalities as printf but stores the result in a string.
This string could then be printed with puts to give the same output as printf as a whole.

In the following sections, we will discuss the different header files that declare the
interfaces of the C library (subsection 8.1.1), the different types of interfaces it provides
(subsection 8.1.2), the various error strategies it applies (subsection 8.1.3), an optional
series of interfaces intended to improve application safety (subsection 8.1.4), and tools
that we can use to assert platform-specific properties at compile time (subsection 8.1.5).

[Exs 51]Write a function my_strtod that implements the functionality of strtod for decimal floating-point con-
stants.

8. C LIBRARY FUNCTIONS 91

TABLE 8.1. C library headers

Name Description Section
<assert.h> Asserting runtime conditions 8.7
<complex.h> Complex numbers 5.7.7
<ctype.h> Character classification and conversion 8.4
<errno.h> Error codes 8.1.3
<fenv.h> Floating-point environment
<float.h> Properties of floating-point types 5.7
<inttypes.h> Formatting conversion of integer types 5.7.6
<iso646.h> Alternative spellings for operators 4.1
<limits.h> Properties of integer types 5.1.3
<locale.h> Internationalization 8.6
<math.h> Type-specific mathematical functions 8.2
<setjmp.h> Non-local jumps 17.5
<signal.h> Signal-handling functions 17.6
<stdalign.h> Alignment of objects 12.7
<stdarg.h> Functions with varying numbers of arguments 16.5.2
<stdatomic.h> Atomic operations 17.6
<stdbool.h> Booleans 3.1
<stddef.h> Basic types and macros 5.2
<stdint.h> Exact-width integer types 5.7.6
<stdio.h> Input and output 8.3
<stdlib.h> Basic functions 2
<stdnoreturn.h> Non-returning functions 7
<string.h> String handling 8.4
<tgmath.h> Type-generic mathematical functions 8.2
<threads.h> Threads and control structures 18
<time.h> Handling time 8.5
<uchar.h> Unicode characters 14.3
<wchar.h> Wide strings 14.3
<wctype.h> Wide character classification and conversion 14.3

8.1.1. Headers. The C library has a lot of functions, far more than we can handle in
this book. A headerC file bundles interface descriptions for a number of features, mostly
functions. The header files that we will discuss here provide features of the C library, but
later we can create our own interfaces and collect them in headers (section 10).

On this level, we will discuss the functions from the C library that are necessary for
basic programming with the elements of the language we have seen so far. We will com-
plete this discussion on higher levels, when we discuss a range of concepts. Table 8.1 has
an overview of the standard header files.

8.1.2. Interfaces. Most interfaces in the C library are specified as functions, but im-
plementations are free to chose to implement them as macros, where doing so is appropri-
ate. Compared to those we saw in subsection 5.6.3, this uses a second form of macros that
are syntactically similar to functions, function-like macrosC :

#define putchar(A) putc(A, stdout)

As before, these are just textual replacements, and since the replacement text may
contain a macro argument several times, it would be bad to pass any expression with side
effects to such a macro or function. Hopefully, our previous discussion about side effects
(takeaway 1.4.2.2) has already convinced you not to do that.

92 1. ACQUAINTANCE

TABLE 8.2. Error return strategies for C library functions. Some func-
tions may also indicate a specific error condition through the value of the
errno macro.

Failure return Test Typical case Example
0 !value Other values are valid fopen
Special error code value == code Other values are valid puts, clock,

mktime,
strtod, fclose

Nonzero value value Value otherwise unneeded fgetpos,
fsetpos

Special success code value != code Case distinction for failure
condition

thrd_create

Negative value value < 0 Positive value is a counter printf

Some of the interfaces we will look at have arguments or return values that are point-
ers. We can’t handle these completely yet, but in most cases we can get away with passing
in known pointers or 0 for pointer arguments. Pointers as return values will only occur in
situations where they can be interpreted as an error condition.

8.1.3. Error checking. C library functions usually indicate failure through a special
return value. What value indicates the failure can be different and depends on the function
itself. Generally, you have to look up the specific convention in the manual page for the
functions. Table 8.2 gives a rough overview of the possibilities. There are three categories
that apply: a special value that indicates an error, a special value that indicates success,
and functions that return some sort of positive counter on success and a negative value on
failure.

Typical error-checking code looks like the following:

if (puts("hello␣world") == EOF) {
perror("can't␣output␣to␣terminal:");
exit(EXIT_FAILURE);

}

Here we see that puts falls into the category of functions that return a special value
on error, EOF, “end-of-file.” The perror function from stdio.h is then used to provide an<stdio.h>

additional diagnostic that depends on the specific error. exit ends the program execution.
Don’t wipe failures under the carpet. In programming,

Takeaway 1.8.1.1 Failure is always an option.

Takeaway 1.8.1.2 Check the return value of library functions for errors.

An immediate failure of the program is often the best way to ensure that bugs are
detected and get fixed early in development.

Takeaway 1.8.1.3 Fail fast, fail early, and fail often.

C has one major state variable that tracks errors of C library functions: a dinosaur
called errno. The perror function uses this state under the hood, to provide its diagnostic.
If a function fails in a way that allows us to recover, we have to ensure that the error state
also is reset; otherwise, the library functions or error checking might get confused:

8. C LIBRARY FUNCTIONS 93

void puts_safe(char const s[static 1]) {
static bool failed = false;
if (! failed && puts(s) == EOF) {

perror("can't␣output␣to␣terminal:");
failed = true;
errno = 0;

}
}

8.1.4. Bounds-checking interfaces. Many of the functions in the C library are vulner-
able to buffer overflowC if they are called with an inconsistent set of parameters. This led
(and still leads) to a lot of security bugs and exploits and is generally something that should
be handled very carefully.

C11 addressed this sort of problems by deprecating or removing some functions from
the standard and by adding an optional series of new interfaces that check consistency of
the parameters at runtime. These are the bounds-checking interfaces of Annex K of the C
standard. Unlike most other features, this doesn’t come with its own header file but adds
interfaces to others. Two macros regulate access to theses interfaces: __STDC_LIB_EXT1__
tells whether this optional interfaces is supported, and
__STDC_WANT_LIB_EXT1__ switches it on. The latter must be set before any header files
are included:

#if !__STDC_LIB_EXT1__
error "This␣code␣needs␣bounds␣checking␣interface␣Annex␣K"
#endif
#define __STDC_WANT_LIB_EXT1__ 1

#include <stdio.h>

/* Use printf_s from here on. */

This mechanism was (and still is) open to much debate, and therefore Annex K is an
optional feature. Many modern platforms have consciously chosen not to support it. There
even has been an extensive study by O’Donell and Sebor [2015] that concluded that the
introduction of these interfaces has created much more problems than it solved. In the
following, such optional features are marked with a gray background.

Annex K

The bounds-checking functions usually use the suffix _s on the name of the library
function they replace, such as printf_s for printf. So you should not use that suffix for
code of your own.

Takeaway 1.8.1.4 Identifier names terminating with _s are reserved.

If such a function encounters an inconsistency, a runtime constraint violationC , it
usually should end program execution after printing a diagnostic.

8.1.5. Platform preconditions. An important goal of programming with a standard-
ized language such as C is portability. We should make as few assumptions about the
execution platform as possible and leave it to the C compiler and library to fill in the gaps.
Unfortunately, this is not always an option, in which case we should clearly identify code
preconditions.

Takeaway 1.8.1.5 Missed preconditions for the execution platform must abort compila-
tion.

94 1. ACQUAINTANCE

The classic tools to achieve this are preprocessor conditionalsC , as we saw earlier:

#if !__STDC_LIB_EXT1__
error "This␣code␣needs␣bounds␣checking␣interface␣Annex␣K"
#endif

As you can see, such a conditional starts with the token sequence # if on a line and
terminates with another line containing the sequence # endif. The # error directive in
the middle is executed only if the condition (here !__STDC_LIB_EXT1__) is true. It aborts
the compilation process with an error message. The conditions that we can place in such a
construct are limited.[Exs 52]

Takeaway 1.8.1.6 Only evaluate macros and integer literals in a preprocessor condi-
tion.

As an extra feature in these conditions, identifiers that are unknown evaluate to 0. So,
in the previous example, the expression is valid, even if __STDC_LIB_EXT1__ is unknown
at that point.

Takeaway 1.8.1.7 In preprocessor conditions, unknown identifiers evaluate to 0.

If we want to test a more sophisticated condition, _Static_assert (a keyword) and
static_assert (a macro from the header assert.h) have a similar effect and are at our<assert.h>

disposal:

#include <assert.h>
static_assert(sizeof(double) == sizeof(long double),

"Extra␣precision␣needed␣for␣convergence.");

8.2. Mathematics. Mathematical functions come with the math.h header, but it is<math.h>

much simpler to use the type-generic macros that come with tgmath.h. Basically, for all<tgmath.h>

functions, it has a macro that dispatches an invocation such as sin(x) or pow(x, n) to the
function that inspects the type of x in its argument and for which the return value is of that
same type.

The type-generic macros that are defined are far too many to describe in detail here.
Table 8.3 gives an overview of the functions that are provided.

Table 8.3: Mathematical functions. Type-generic macros are printed in
red, and plain functions in green.

Function Description
abs, labs, llabs |x| for integers
acosh Hyperbolic arc cosine
acos Arc cosine
asinh Hyperbolic arc sine
asin Arc sine
atan2 Arc tangent, two arguments
atanh Hyperbolic arc tangent
atan Arc tangent
cbrt 3

√
x

ceil dxe
copysign Copies the sign from y to x
cosh Hyperbolic cosine
cos Cosine function, cosx

[Exs 52]Write a preprocessor condition that tests whether int has two’s complement sign representation.

8. C LIBRARY FUNCTIONS 95

Table 8.3: Mathematical functions, continued.

Function Description
div, ldiv, lldiv Quotient and remainder of integer division
erfc Complementary error function, 1− 2√

π

∫ x
0
e−t

2

dt

erf Error function, 2√
π

∫ x
0
e−t

2

dt

exp2 2x

expm1 ex − 1
exp ex

fabs |x| for floating point
fdim Positive difference
floor bxc
fmax Floating-point maximum
fma x · y + z
fmin Floating-point minimum
fmod Remainder of floating-point division
fpclassify Classifies a floating-point value
frexp Significand and exponent
hypot

√
x2 + y2

ilogb blogFLT_RADIX xc as integer
isfinite Checks if finite
isinf Checks if infinite
isnan Checks if NaN
isnormal Checks if normal
ldexp x · 2y
lgamma loge Γ(x)
log10 log10 x
log1p loge(1 + x)
log2 log2 x
logb logFLT_RADIX x as floating point
log loge x
modf, modff, modfl Integer and fractional parts
nan, nanf, nanl Not-a-number (NaN) of the corresponding type
nearbyint Nearest integer using the current rounding mode
nextafter, nexttoward Next representable floating-point value
pow xy

remainder Signed remainder of division
remquo Signed remainder and the last bits of the division
rint, lrint, llrint Nearest integer using the current rounding mode
round, lround, llround sign(x) ·b|x|+ 0.5c
scalbn, scalbln x · FLT_RADIXy
signbit Checks if negative
sinh Hyperbolic sine
sin Sine function, sinx
sqrt 2

√
x

tanh Hyperbolic tangent
tan Tangent function, tanx
tgamma Gamma function, Γ(x)
trunc sign(x) ·b|x|c

Nowadays, implementations of numerical functions should be high quality, be effi-
cient, and have well-controlled numerical precision. Although any of these functions could

96 1. ACQUAINTANCE

be implemented by a programmer with sufficient numerical knowledge, you should not try
to replace or circumvent them. Many of them are not just implemented as C functions
but also can use processor-specific instructions. For example, processors may have fast
approximations of sqrt and sin functions, or implement a floating-point multiply add,
fma, in a low-level instruction. In particular, there is a good chance that such low-level
instructions are used for all functions that inspect or modify floating-point internals, such
as carg, creal, fabs, frexp, ldexp, llround, lround, nearbyint, rint, round, scalbn,
and trunc. So, replacing them or reimplementing them in handcrafted code is usually a
bad idea.

8.3. Input, output, and file manipulation. We have seen some of the IO functions
that come with the header file stdio.h: puts and printf. Whereas the second lets you<stdio.h>

format output in a convenient fashion, the first is more basic: it just outputs a string (its
argument) and an end-of-line character.

8.3.1. Unformatted text output. There is an even more basic function than puts:
putchar, which outputs a single character. The interfaces of these two functions are as
follows:

int putchar(int c);
int puts(char const s[static 1]);

The type int as a parameter for putchar is a historical accident that shouldn’t hurt
you much. In contrast to that, having a return type of int is necessary so the function can
return errors to its caller. In particular, it returns the argument c if successful and a specific
negative value EOF (End Of File) that is guaranteed not to correspond to any character on
failure.

With this function, we could actually reimplement puts ourselves:

int puts_manually(char const s[static 1]) {
for (size_t i = 0; s[i]; ++i) {

if (putchar(s[i]) == EOF) return EOF;
}
if (putchar('\n') == EOF) return EOF;
return 0;

}

This is just an example; it is probably less efficient than the puts that your platform
provides.

Up to now, we have only seen how to output to the terminal. Often, you’ll want to write
results to permanent storage, and the type FILE* for streamsC provides an abstraction for
this. There are two functions, fputs and fputc, that generalize the idea of unformatted
output to streams:

int fputc(int c, FILE* stream);
int fputs(char const s[static 1], FILE* stream);

Here, the * in the FILE* type again indicates that this is a pointer type, and we won’t
go into the details. The only thing we need to know for now is that a pointer can be tested
whether it is null (takeaway 1.6.2.4), so we will be able to test whether a stream is valid.

The identifier FILE represents an opaque typeC , for which we don’t know more than
is provided by the functional interfaces that we will see in this section. The fact that it is
implemented as a macro, and the misuse of the name “FILE” for a stream is a reminder
that this is one of the historical interfaces that predate standardization.

Takeaway 1.8.3.1 Opaque types are specified through functional interfaces.

Takeaway 1.8.3.2 Don’t rely on implementation details of opaque types.

8. C LIBRARY FUNCTIONS 97

If we don’t do anything special, two streams are available for output: stdout and
stderr. We have already used stdout implicitly: this is what putchar and puts use
under the hood, and this stream is usually connected to the terminal. stderr is similar and
also is linked to the terminal by default, with perhaps slightly different properties. In any
case, these two are closely related. The purpose of having two of them is to be able to
distinguish “usual” output (stdout) from “urgent” output (stderr).

We can rewrite the previous functions in terms of the more general ones:

int putchar_manually(int c) {
return fputc(c, stdout);

}
int puts_manually(char const s[static 1]) {

if (fputs(s, stdout) == EOF) return EOF;
if (fputc('\n', stdout) == EOF) return EOF;
return 0;

}

Observe that fputs differs from puts in that it doesn’t append an end-of-line character
to the string.

Takeaway 1.8.3.3 puts and fputs differ in their end-of-line handling.

8.3.2. Files and streams. If we want to write output to real files, we have to attach the
files to our program execution by means of the function fopen:

FILE* fopen(char const path[static 1], char const mode[static 1]);
FILE* freopen(char const path[static 1], char const mode[static 1],

FILE *stream);

This can be used as simply as here:

int main(int argc , char* argv[argc +1]) {
FILE* logfile = fopen("mylog.txt", "a");
if (! logfile) {

perror("fopen␣failed");
return EXIT_FAILURE;

}
fputs("feeling␣fine␣today\n", logfile);
return EXIT_SUCCESS;

}

This opens a fileC called "mylog.txt" in the file system and provides access to it
through the variable logfile. The mode argument "a" opens the file for appending: that
is, the contents of the file are preserved, if they exist, and writing begins at the current end
of that file.

There are multiple reasons why opening a file might not succeed: for example, the file
system might be full, or the process might not have permission to write at the indicated
place. We check for such an error condition (takeaway 1.8.1.2) and exit the program if
necessary.

As we have seen, the perror function is used to give a diagnostic of the error that
occurred. It is equivalent to something like the following:

fputs("fopen␣failed:␣some-diagnostic\n", stderr);

This “some-diagnostic” might (but does not have to) contain more information that helps
the user of the program deal with the error.

98 1. ACQUAINTANCE

TABLE 8.4. Modes and modifiers for fopen and freopen. One of the
first three must start the mode string, optionally followed by one or more
of the other three. See table 8.5 for all valid combinations.

Mode Memo File status after fopen
'a' Append w File unmodified; position at end
'w' Write w Content of file wiped out, if any
'r' Read r File unmodified; position at start
Modifier Memo Additional property
'+' Update rw Opens file for reading and writing
'b' Binary Views as a binary file; otherwise a text file
'x' Exclusive Creates a file for writing if it does not yet exist

Annex K

There are also bounds-checking replacements fopen_s and freopen_s, which ensure
that the arguments that are passed are valid pointers. Here, errno_t is a type that comes
with stdlib.h and encodes error returns. The restrict keyword that also newly appears
only applies to pointer types and is out of our scope for the moment:

errno_t fopen_s(FILE* restrict streamptr[restrict],
char const filename[restrict], char const mode[restrict])

;
errno_t freopen_s(FILE* restrict newstreamptr[restrict],

char const filename[restrict], char const mode[restrict
],

FILE* restrict stream);

There are different modes to open a file; "a" is only one of several possibilities. Ta-
ble 8.4 contains an overview of the characters that may appear in that string. Three base
modes regulate what happens to a pre-existing file, if any, and where the stream is posi-
tioned. In addition, three modifiers can be appended to them. Table 8.5 has a complete list
of the possible combinations.

These tables show that a stream can be opened not only for writing but also for reading;
we will see shortly how that can be done. To know which of the base modes opens for
reading or writing, just use your common sense. For 'a' and 'w', a file that is positioned
at its end can’t be read, since there is nothing there; thus these open for writing. For 'r',
file content that is preserved and positioned at the beginning should not be overwritten
accidentally, so this is for reading.

The modifiers are used less commonly in everyday coding. “Update” mode with '+'
should be used carefully. Reading and writing at the same time is not easy and needs some
special care. For 'b', we will discuss the difference between text and binary streams in
more detail in subsection 14.4.

There are three other principal interfaces to handle streams, freopen, fclose, and
fflush:

int fclose(FILE* fp);
int fflush(FILE* stream);

The primary uses for freopen and fclose are straightforward: freopen can associate
a given stream to a different file and eventually change the mode. This is particular useful
to associate the standard streams to a file. E.g our little program from above could be
rewritten as

8. C LIBRARY FUNCTIONS 99

TABLE 8.5. Mode strings for fopen and freopen. These are the valid
combinations of the characters in table 8.4.

"a" Creates an empty text file if necessary; open for writing at end-
of-file

"w" Creates an empty text file or wipes out content; open for writing
"r" Opens an existing text file for reading
"a+" Creates an empty text file if necessary; open for reading and

writing at end-of-file
"w+" Creates an empty text file or wipes out content; open for reading

and writing
"r+" Opens an existing text file for reading and writing at beginning

of file
"ab" "rb" "wb"
"a+b" "ab+"
"r+b" "rb+"
"w+b" "wb+"

Same as above, but for a binary file instead of a text file

"wx" "w+x"
"wbx" "w+bx"
"wb+x"

Same as above, but error if the file exists prior to the call

int main(int argc , char* argv[argc +1]) {
if (! freopen("mylog.txt", "a", stdout)) {

perror("freopen␣failed");
return EXIT_FAILURE;

}
puts("feeling␣fine␣today");
return EXIT_SUCCESS;

}

8.3.3. Text IO. Output to text streams is usually bufferedC : that is, to make more
efficient use of its resources, the IO system can delay the physical write of to a stream.
If we close the stream with fclose, all buffers are guaranteed to be flushedC to where it
is supposed to go. The function fflush is needed in places where we want to see output
immediately on the terminal, or where don’t want to close the file yet but want to ensure
that all content we have written has properly reached its destination. Listing 8.1 shows an
example that writes 10 dots to stdout with a delay of approximately one second between
all writes.[Exs 53]

The most common form of IO buffering for text files is line bufferingC . In that mode,
output is only physically written if the end of a text line is encountered. So usually, text that
is written with puts appears immediately on the terminal; fputs waits until it encounters
an '\n' in the output. Another interesting thing about text streams and files is that there
is no one-to-one correspondence between characters that are written in the program and
bytes that land on the console device or in the file.

Takeaway 1.8.3.4 Text input and output converts data.

This is because internal and external representations of text characters are not nec-
essarily the same. Unfortunately, there are still many different character encodings; the
C library is in charge of doing the conversions correctly, if it can. Most notoriously, the
end-of-line encoding in files is platform dependent:

[Exs 53]Observe the behavior of the program by running it with zero, one, and two command-line arguments.

100 1. ACQUAINTANCE

LISTING 8.1. flushing buffered output

1 #include <stdio.h>
2
3 /* delay execution with some crude code ,
4 should use thrd_sleep , once we have that */
5 void delay(double secs) {
6 double const magic = 4E8; // works just on my machine
7 unsigned long long const nano = secs * magic;
8 for (unsigned long volatile count = 0;
9 count < nano;

10 ++count) {
11 /* nothing here */
12 }
13 }
14
15 int main(int argc , char* argv[argc +1]) {
16 fputs("waiting␣10␣seconds␣for␣you␣to␣stop␣me", stdout);
17 if (argc < 3) fflush(stdout);
18 for (unsigned i = 0; i < 10; ++i) {
19 fputc('.', stdout);
20 if (argc < 2) fflush(stdout);
21 delay (1.0);
22 }
23 fputs("\n", stdout);
24 fputs("You␣did␣ignore␣me,␣so␣bye␣bye\n", stdout);
25 }

Takeaway 1.8.3.5 There are three commonly used conversion to encode end-of-line.

C gives us a very suitable abstraction in using '\n' for this, regardless of the platform.
Another modification you should be aware of when doing text IO is that white space that
precedes the end of line may be suppressed. Therefore, the presence of trailing white
spaceC such as blank or tabulator characters cannot be relied upon and should be avoided:

Takeaway 1.8.3.6 Text lines should not contain trailing white space.

The C library additionally also has very limited support for manipulating files within
the file system:

int remove(char const pathname[static 1]);
int rename(char const oldpath[static 1], char const newpath[static 1]);

These basically do what their names indicate.
8.3.4. Formatted output. We have covered how to use printf for formatted output.

The function fprintf is very similar to that, but it has an additional parameter that allows
us to specify the stream to which the output is written:

int printf(char const format[static 1], ...);
int fprintf(FILE* stream , char const format[static 1], ...);

The syntax with the three dots ... indicates that these functions may receive an arbi-
trary number of items that are to be printed. An important constraint is that this number
must correspond exactly to the '%' specifiers; otherwise the behavior is undefined:

8. C LIBRARY FUNCTIONS 101

TABLE 8.6. Format specifications for printf and similar functions,
with the general syntax "%[FF][WW][.PP][LL]SS", where [] surround-
ing a field denotes that it is optional.

FF Flags Special form of conversion
WW Field width minimum width
PP Precision
LL Modifier Select width of type
SS Specifier Select conversion

TABLE 8.7. Format specifiers for printf and similar functions

'd' or 'i' Decimal Signed integer
'u' Decimal Unsigned integer
'o' Octal Unsigned integer
'x' or 'X' Hexadecimal Unsigned integer
'e' or 'E' [-]d.ddd e±dd, “scientific” Floating point
'f' or 'F' [-]d.ddd Floating point
'g' or 'G' generic e or f Floating point
'a' or 'A' [-]0xh.hhhh p±d, Hexadecimal Floating point
'%' '%' character No argument is converted.
'c' Character Integer
's' Characters String
'p' Address void* pointer

Takeaway 1.8.3.7 Parameters of printf must exactly correspond to the format speci-
fiers.

With the syntax %[FF][WW][.PP][LL]SS, a complete format specification can be com-
posed of five parts: flags, width, precision, modifiers, and specifier. See table 8.6 for
details.

The specifier is not optional and selects the type of output conversion that is performed.
See table 8.7 for an overview.

As you can see, for most types of values, there is a choice of format. You should chose
the one that is most appropriate for the meaning of the value that the output is to convey.
For all numerical values, this should usually be a decimal format.

Takeaway 1.8.3.8 Use "%d" and "%u" formats to print integer values.

If, on the other hand, you are interested in a bit pattern, use the hexadecimal format
over octal. It better corresponds to modern architectures that have 8-bit character types.

Takeaway 1.8.3.9 Use the "%x" format to print bit patterns.

Also observe that this format receives unsigned values, which is yet another incentive
to only use unsigned types for bit sets. Seeing hexadecimal values and associating the
corresponding bit pattern requires training. Table 8.8 has an overview of the digits, the
values and the bit pattern they represent.

For floating-point formats, there is even more choice. If you do not have specific
needs, the generic format is the easiest to use for decimal output.

Takeaway 1.8.3.10 Use the "%g" format to print floating-point values.

102 1. ACQUAINTANCE

Digit Value Pattern
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111

Digit Value Pattern
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

TABLE 8.8. Hexadecimal values and bit patterns

TABLE 8.9. Format modifiers for printf and similar functions. float
arguments are first converted to double.

Character Type Conversion
"hh" char types Integer
"h" short types Integer
"" signed, unsigned Integer
"l" long integer types integer
"ll" long long integer types Integer
"j" intmax_t, uintmax_t Integer
"z" size_t Integer
"t" ptrdiff_t Integer
"L" long double Floating point

The modifier part is important to specify the exact type of the corresponding argu-
ment. Table 8.9 gives the codes for the types we have encountered so far. This modifier
is particularly important because interpreting a value with the wrong modifier can cause
severe damage. The printf functions only have knowledge about their arguments through
the format specifiers, so giving a function the wrong size may lead it to read more or fewer
bytes than provided by the argument or to interpret the wrong hardware registers.

Takeaway 1.8.3.11 Using an inappropriate format specifier or modifier makes the be-
havior undefined.

A good compiler should warn about wrong formats; please take such warnings seri-
ously. Note also the presence of special modifiers for the three semantic types. In partic-
ular, the combination "%zu" is very convenient because we don’t have to know the base
type to which size_t corresponds.

The width (WW) and precision (.PP) can be used to control the general appearance of a
printed value. For example, for the generic floating-point format "%g", the precision con-
trols the number of significant digits. A format of "%20.10g" specifies an output field of 20
characters with at most 10 significant digits. How these values are interpreted specifically
differs for each format specifier.

The flag can change the output variant, such as prefixing with signs ("%+d"), 0x for
hexadecimal conversion ("%#X"), 0 for octal ("%#o"), padding with 0, or adjusting the
output within its field to the left instead of the right. See table 8.10. Remember that
a leading zero for integers is usually interpreted as introducing an octal number, not a
decimal. So using zero padding with left adjustment "%-0" is not a good idea because it
can confuse the reader about the convention that is applied.

8. C LIBRARY FUNCTIONS 103

TABLE 8.10. Format flags for printf and similar functions

Character Meaning Conversion
"#" Alternate form, such as prefix 0x "aAeEfFgGoxX"
"0" Zero padding Numeric
"-" Left adjustment Any
"␣" '␣' for positive values, '-' for negative Signed
"+" '+' for positive values, '-' for negative Signed

If we know that the numbers we write will be read back in from a file later, the forms
"%+d" for signed types, "%#X" for unsigned types, and "%a" for floating point are the most
appropriate. They guarantee that the string-to-number conversions will detect the correct
form and that the storage in a file will not lose information.

Takeaway 1.8.3.12 Use "%+d", "%#X", and "%a" for conversions that have to be read
later.

Annex K

The optional interfaces printf_s and fprintf_s check that the stream, the format,
and any string arguments are valid pointers. They don’t check whether the expressions in
the list correspond to correct format specifiers:

int printf_s(char const format[restrict], ...);
int fprintf_s(FILE *restrict stream ,

char const format[restrict], ...);

Here is a modified example for reopening stdout:

int main(int argc , char* argv[argc +1]) {
int ret = EXIT_FAILURE;
fprintf_s(stderr , "freopen␣of␣%s:", argv [1]);
if (freopen(argv[1], "a", stdout)) {

ret = EXIT_SUCCESS;
puts("feeling␣fine␣today");

}
perror (0);
return ret;

}

This improves the diagnostic output by adding the filename to the output string. fprintf_s
is used to check the validity of the stream, the format, and the argument string. This
function may mix the output of the two streams if they are both connected to the same
terminal.

8.3.5. Unformatted text input. Unformatted input is best done with fgetc for a single
character and fgets for a string. The stdin standard stream is always defined and usually
connects to terminal input:

int fgetc(FILE* stream);
char* fgets(char s[restrict], int n, FILE* restrict stream);
int getchar(void);

104 1. ACQUAINTANCE

Annex K

In addition, there are also getchar and gets_s, which read from stdin but don’t add
much to the previous interfaces that are more generic:

char* gets_s(char s[static 1], rsize_t n);

Historically, in the same spirit in which puts specializes fputs, the prior version of
the C standard had a gets interface. This has been removed because it was inherently
unsafe.

Takeaway 1.8.3.13 Don’t use gets.

The following listing shows a function that has functionality equivalent to fgets.

LISTING 8.2. Implementing fgets in terms of fgetc
1 char* fgets_manually(char s[restrict], int n,
2 FILE*restrict stream) {
3 if (! stream) return 0;
4 if (!n) return s;
5 /* Reads at most n-1 characters */
6 for (size_t pos = 0; pos < n-1; ++pos) {
7 int val = fgetc(stream);
8 switch (val) {
9 /* EOF signals end-of-file or error */

10 case EOF: if (feof(stream)) {
11 s[i] = 0;
12 /* Has been a valid call */
13 return s;
14 } else {
15 /* Error */
16 return 0;
17 }
18 /* Stop at end-of-line. */
19 case '\n': s[i] = val; s[i+1] = 0; return s;
20 /* Otherwise just assign and continue. */
21 default: s[i] = val;
22 }
23 }
24 s[n-1] = 0;
25 return s;
26 }

Again, such example code is not meant to replace the function, but to illustrate prop-
erties of the functions in question: here, the error-handling strategy.

Takeaway 1.8.3.14 fgetc returns int to be able to encode a special error status, EOF,
in addition to all valid characters.

Also, detecting a return of EOF alone is not sufficient to conclude that the end of the
stream has been reached. We have to call feof to test whether a stream’s position has
reached its end-of-file marker.

Takeaway 1.8.3.15 End of file can only be detected after a failed read.

Listing 8.3 presents an example that uses both input and output functions.

8. C LIBRARY FUNCTIONS 105

LISTING 8.3. A program to dump multiple text files to stdout
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <errno.h>
4
5 enum { buf_max = 32, };
6
7 int main(int argc , char* argv[argc +1]) {
8 int ret = EXIT_FAILURE;
9 char buffer[buf_max] = { 0 };

10 for (int i = 1; i < argc; ++i) { // Processes args
11 FILE* instream = fopen(argv[i], "r"); // as filenames
12 if (instream) {
13 while (fgets(buffer , buf_max , instream)) {
14 fputs(buffer , stdout);
15 }
16 fclose(instream);
17 ret = EXIT_SUCCESS;
18 } else {
19 /* Provides some error diagnostic. */
20 fprintf(stderr , "Could␣not␣open␣%s:␣", argv[i]);
21 perror (0);
22 errno = 0; // Resets the error code
23 }
24 }
25 return ret;
26 }

This is a small implementation of cat that reads a number of files that are given on
the command line and dumps the contents to stdout.[Exs 54][Exs 55][Exs 56][Exs 57]

8.4. String processing and conversion. String processing in C has to deal with the
fact that the source and execution environments may have different encodings. It is there-
fore crucial to have interfaces that work independently of the encoding. The most important
tools are given by the language itself: integer character constants such as 'a' and '\n' and
string literals such as "hello:\tx" should always do the right thing on your platform. As
you perhaps remember, there are no constants for types that are narrower than int; and,
as an historical artifact, integer character constants such as 'a' have type int, not char as
you would probably expect.

Handling such constants can become cumbersome if you have to deal with character
classes.

Therefore, the C library provides functions and macros that deal with the most com-
monly used classes through the header ctype.h. It has the classifiers isalnum, isalpha, <ctype.h>

isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper,
and isxdigit, and conversions toupper and tolower. Again, for historical reasons, all
of these take their arguments as int and also return int. See table 8.11 for an overview
of the classifiers. The functions toupper and tolower convert alphabetic characters to the
corresponding case and leave all other characters as they are.

The table has some special characters such as '\n' for a new-line character, which
we have encountered previously. All the special encodings and their meaning are given in
table 8.12.

[Exs 54]Under what circumstances will this program finish with success or failure return codes?
[Exs 55]Surprisingly, this program even works for files with lines that have more than 31 characters. Why?
[Exs 56]Have the program read from stdin if no command-line argument is given.

[Exs 57]Have the program precede all output lines with line numbers if the first command-line argument is "-n".

106 1. ACQUAINTANCE

TABLE 8.11. Character classifiers. The third column indicates whether
C implementations may extend these classes with platform-specific char-
acters, such as 'ä' as a lowercase character or 'e' as punctuation.

Name Meaning C locale Extended
islower Lowercase 'a' · · · 'z' Yes
isupper Uppercase 'A' · · · 'Z' Yes
isblank Blank '␣', '\t' Yes
isspace Space '␣', '\f', '\n', '\r', '\t', '\v' Yes
isdigit Decimal '0' · · · '9' No
isxdigit Hexadecimal '0' · · · '9', 'a' · · · 'f', 'A' · · · 'F' No
iscntrl Control '\a', '\b', '\f', '\n', '\r', '\t', '\v' Yes
isalnum Alphanumeric isalpha(x)||isdigit(x) Yes
isalpha Alphabet islower(x)||isupper(x) Yes
isgraph Graphical (!iscntrl(x)) && (x != '␣') Yes
isprint Printable !iscntrl(x) Yes
ispunct Punctuation isprint(x)&&!(isalnum(x)||isspace(x)) Yes

'\'' Quote
'\"' Double quotes
'\?' Question mark
'\\' Backslash
'\a' Alert
'\b' Backspace
'\f' Form feed
'\n' New line
'\r' Carriage return
'\t' Horizontal tab
'\v' Vertical tab

TABLE 8.12. Special characters in character and string literals

Integer character constants can also be encoded numerically: as an octal value of the
form '\037' or as a hexadecimal value in the form '\xFFFF'. In the first form, up to three
octal digits are used to represent the code. For the second, any sequence of characters after
the x that can be interpreted as a hex digit is included in the code. Using these in strings
requires special care to mark the end of such a character: "\xdeBruyn" is not the same
as "\xde" "Bruyn"58 but corresponds to "\xdeB" "ruyn", the character with code 3563
followed by the four characters 'r', 'u', 'y', and 'n'. Using this feature is only portable
in the sense that it will compile on all platforms as long as a character with code 3563
exists. Whether it exists and what that character actually is depends on the platform and
the particular setting for program execution.

Takeaway 1.8.4.1 The interpretation of numerically encoded characters depends on the
execution character set.

So, their use is not fully portable and should be avoided.

58But remember that consecutive string literals are concatenated (takeaway 1.5.3.1).

8. C LIBRARY FUNCTIONS 107

The following function hexatridecimal uses some of these functions to provide a
base 36 numerical value for all alphanumerical characters. This is analogous to hexadeci-
mal constants, only all other letters have a value in base 36, too: [Exs 59] [Exs 60] [Exs 61]

. strtoul.c

8 /* Supposes that lowercase characters are contiguous. */
9 static_assert('z'-'a' == 25,

10 "alphabetic␣characters␣not␣contiguous");
11 #include <ctype.h>
12 /* Converts an alphanumeric digit to an unsigned */
13 /* '0' ... '9' => 0 .. 9u */
14 /* 'A' ... 'Z' => 10 .. 35u */
15 /* 'a' ... 'z' => 10 .. 35u */
16 /* Other values => Greater */
17 unsigned hexatridecimal(int a) {
18 if (isdigit(a)) {
19 /* This is guaranteed to work: decimal digits
20 are consecutive , and isdigit is not
21 locale dependent. */
22 return a - '0';
23 } else {
24 /* Leaves a unchanged if it is not lowercase */
25 a = toupper(a);
26 /* Returns value >= 36 if not Latin uppercase */
27 return (isupper(a)) ? 10 + (a - 'A') : -1;
28 }
29 }

In addition to strtod, the C library has strtoul, strtol, strtoumax, strtoimax,
strtoull, strtoll, strtold, and strtof to convert a string to a numerical value. Here
the characters at the end of the names correspond to the type: u for unsigned, l (the letter
“el”) for long, d for double, f for float, and [i|u]max for intmax_t and uintmax_t.

The interfaces with an integral return type all have three parameters, such as strtoul

unsigned long int strtoul(char const nptr[restrict],
char** restrict endptr ,
int base);

which interprets a string nptr as a number given in base base. Interesting values for
base are 0, 8, 10, and 16. The last three correspond to octal, decimal, and hexadecimal
encoding, respectively. The first, 0, is a combination of these three, where the base is
chosen according to the usual rules for the interpretation of text as numbers: "7" is decimal,
"007" is octal, and "0x7" is hexadecimal. More precisely, the string is interpreted as
potentially consisting of four different parts: white space, a sign, the number, and some
remaining data.

The second parameter can be used to obtain the position of the remaining data, but
this is still too involved for us. For the moment, it suffices to pass a 0 for that parameter
to ensure that everything works well. A convenient combination of parameters is often
strtoul(S, 0, 0), which will try to interpret S as representing a number, regardless of
the input format. The three functions that provide floating-point values work similarly,
only the number of function parameters is limited to two.

[Exs 59]The second return of hexatridecimal makes an assumption about the relation between a and 'A'. What
is it?

[Exs 60]Describe an error scenario in which this assumption is not fulfilled.
[Exs 61]Fix this bug: that is, rewrite this code such that it makes no assumption about the relation between a and
'A':

108 1. ACQUAINTANCE

Next, we will demonstrate how such functions can be implemented from more basic
primitives. Let us first look at Strtoul_inner. It is the core of a strtoul implementation
that uses hexatridecimal in a loop to compute a large integer from a string:

. strtoul.c

31 unsigned long Strtoul_inner(char const s[static 1],
32 size_t i,
33 unsigned base) {
34 unsigned long ret = 0;
35 while (s[i]) {
36 unsigned c = hexatridecimal(s[i]);
37 if (c >= base) break;
38 /* Maximal representable value for 64 bit is
39 3w5e11264sgsf in base 36 */
40 if (ULONG_MAX/base < ret) {
41 ret = ULONG_MAX;
42 errno = ERANGE;
43 break;
44 }
45 ret *= base;
46 ret += c;
47 ++i;
48 }
49 return ret;
50 }

If the string represents a number that is too big for an unsigned long, this function
returns ULONG_MAX and sets errno to ERANGE.

Now Strtoul gives a functional implementation of strtoul, as far as this can be done
without pointers:

. strtoul.c

60 unsigned long Strtoul(char const s[static 1], unsigned base) {
61 if (base > 36u) { /* Tests if base */
62 errno = EINVAL; /* Extends the specification */
63 return ULONG_MAX;
64 }
65 size_t i = strspn(s, "␣\f\n\r\t\v"); /* Skips spaces */
66 bool switchsign = false; /* Looks for a sign */
67 switch (s[i]) {
68 case '-' : switchsign = true;
69 case '+' : ++i;
70 }
71 if (!base || base == 16) { /* Adjusts the base */
72 size_t adj = find_prefix(s, i, "0x");
73 if (!base) base = (unsigned []){ 10, 8, 16, }[adj];
74 i += adj;
75 }
76 /* Now , starts the real conversion */
77 unsigned long ret = Strtoul_inner(s, i, base);
78 return (switchsign) ? -ret : ret;
79 }

It wraps Strtoul_inner and does the previous adjustments that are needed: it skips
white space, looks for an optional sign, adjusts the base in case the base parameter was 0,

8. C LIBRARY FUNCTIONS 109

and skips an eventual 0 or 0x prefix. Observe also that if a minus sign has been provided,
it does the correct negation of the result in terms of unsigned long arithmetic.[Exs 62]

To skip the spaces, Strtoul uses strspn, one of the string search functions provided
by string.h. This function returns the length of the initial sequence in the first parameter <string.h>

that entirely consists of any character from the second parameter. The function strcspn
(“c” for “complement”) works similarly, but it looks for an initial sequence of characters
not present in the second argument.

This header provides at lot more memory and string search functions: memchr, strchr,
strpbrk strrchr, strstr, and strtok. But to use them, we would need pointers, so we
can’t handle them yet.

8.5. Time. The first class of “times” can be classified as calendar times, times with a
granularity and range that would typically appear in a human calendar for appointments,
birthdays, and so on. Here are some of the functional interfaces that deal with times and
that are all provided by the time.h header: <time.h>

time_t time(time_t *t);
double difftime(time_t time1 , time_t time0);
time_t mktime(struct tm tm[1]);
size_t strftime(char s[static 1], size_t max ,

char const format[static 1],
struct tm const tm[static 1]);

int timespec_get(struct timespec ts[static 1], int base);

The first simply provides us with a timestamp of type time_t of the current time.
The simplest form uses the return value of time(0). As we have seen, two such times
taken from different moments during program execution can then be used to express a time
difference by means of difftime.

Let’s see what all this is doing from the human perspective. As we know, struct tm
structures a calendar time mainly as you would expect. It has hierarchical date members
such as tm_year for the year, tm_mon for the month, and so on, down to the granularity of
a second. It has one pitfall, though: how the members are counted. All but one start with
0: for example, tm_mon set to 0 stands for January, and tm_wday 0 stands for Sunday.

Unfortunately, there are exceptions:

• tm_mday starts counting days in the month at 1.
• tm_year must add 1900 to get the year in the Gregorian calendar. Years repre-

sented that way should be between Gregorian years 0 and 9999.
• tm_sec is in the range from 0 to 60, inclusive. The latter is for the rare occasion

of leap seconds.

Three supplemental date members are used to supply additional information to a time
value in a struct tm:

• tm_wday for the week day.
• tm_yday for the day in the year.
• tm_isdst is a flag that informs us whether a date is considered to be in DST for

the local time zone.

The consistency of all these members can be enforced with the function mktime. It
operates in three steps:

(1) The hierarchical date members are normalized to their respective ranges.
(2) tm_wday and tm_yday are set to the corresponding values.
(3) If tm_isday has a negative value, this value is modified to 1 if the date falls into

DST for the local platform, or to 0 otherwise.

[Exs 62]Implement a function find_prefix as needed by Strtoul.

110 1. ACQUAINTANCE

mktime also serves an extra purpose. It returns the time as a time_t. time_t represents
the same calendar times as struct tm but is defined to be an arithmetic type, more suited
to compute with such types. It operates on a linear time scale. A time_t value of 0 at the
beginning of time_t is called the epochC in the C jargon. Often this corresponds to the
beginning of Jan 1, 1970.

The granularity of time_t is usually to the second, but nothing guarantees that. Some-
times processor hardware has special registers for clocks that obey a different granularity.
difftime translates the difference between two time_t values into seconds that are repre-
sented as a double value.

Annex K

Other traditional functions that manipulate time in C are a bit dangerous because they
operate on global state. We will not discuss them here, but variants of these interfaces have
been reviewed in Annex K in an _s form:

errno_t asctime_s(char s[static 1], rsize_t maxsize ,
struct tm const timeptr[static 1]);

errno_t ctime_s(char s[static 1], rsize_t maxsize ,
const time_t timer[static 1]);

struct tm *gmtime_s(time_t const timer[restrict static 1],
struct tm result[restrict static 1]);

struct tm *localtime_s(time_t const timer[restrict static 1],
struct tm result[restrict static 1]);

Figure 8.1 shows how all these functions interact:

char[]

mktime

struct timespec

timespec_get

time_t tv_sec

long tv_nsec

double
difftime

struct tm

localtime_s

gmtime_s

ti
me

st
rf

ti
me

as
ct

im
e_

s

ctime_s

FIGURE 8.1. Time conversion functions

Two functions for the inverse operation from time_t into struct tm come into view:
• localtime_s stores the broken-down local time.
• gmtime_s stores the broken time, expressed as universal time, UTC.

As indicated, they differ in the time zone they assume for the conversion. Under nor-
mal circumstances, localtime_s and mktime should be inverse to each other; gmtime_s
has no direct counterpart in the inverse direction.

Textual representations of calendar times are also available. asctime_s stores the date
in a fixed format, independent of any locale, language (it uses English abbreviations), or
platform dependency. The format is a string of the form

"Www␣Mmm␣DD␣HH:MM:SS␣YYYY\n"

strftime is more flexible and allows us to compose a textual representation with format
specifiers.

8. C LIBRARY FUNCTIONS 111

It works similarly to the printf family but has special %-codes for dates and times; see
table 8.13. Here, the Locale column indicates that different environment settings, such as
preferred language or time zone, may influence the output. How to access and eventually
set these will be explained in subsection 8.6. strftime receives three arrays: a char[max]
array that is to be filled with the result string, another string that holds the format, and a
struct tm const[1] that holds the time to be represented. The reason for passing in an
array for the time will only become apparent when we know more about pointers.

The opaque type time_t (and as a consequence time itself) only has a granularity of
seconds.

If we need more precision than that, struct timespec and the timespec_get func-
tion can be used. With that, we have an additional member tv_nsec that provides nanosec-
ond precision. The second argument, base, has only one value defined by the C standard:
TIME_UTC. You should expect a call to timespec_get with that value to be consistent with
calls to time. They both refer to Earth’s reference time. Specific platforms may provide
additional values for base that specify a clock that is different from a clock on the wall. An
example of such a clock could be relative to the planetary or other physical system your
computer system is involved with.63 Relativity and other time adjustments can be avoided
by using a monotonic clock that only refers to the startup time of the system. A CPU clock
could refer to the time the program execution had been attributed processing resources.

For the latter, there is an additional interface that is provided by the C standard library:

clock_t clock(void);

For historical reasons, this introduces yet another type, clock_t. It is an arithmetic time
that gives the processor time in CLOCKS_PER_SEC units per second.

Having three different interfaces, time, timespec_get, and clock, is a bit unfortu-
nate. It would have been beneficial to provide predefined constants such as
TIME_PROCESS_TIME and TIME_THREAD_TIME for other forms of clocks.

CHALLENGE 10 (Performance comparison of sorting algorithms). Can you compare the
time efficiency of your sorting programs (challenge 1) with data sizes of several orders of
magnitude?
Be careful to check that you have some randomness in the creation of the data and that the
data size does not exceed the available memory of your computer.
For both algorithms, you should roughly observe a behavior that is proportional to
N logN , where N is the number of elements that are sorted.

8.6. Runtime environment settings. A C program can access an environment listC :
a list of name-value pairs of strings (often called environment variablesC) that can transmit
specific information from the runtime environment. There is a historical function getenv
to access this list:

char* getenv(char const name[static 1]);

Given our current knowledge, with this function we are only able to test whether a name is
present in the environment list:

63Be aware that objects that move fast relative to Earth, such as satellites and spacecraft, may perceive rela-
tivistic time shifts compared to UTC.

112 1. ACQUAINTANCE

TABLE 8.13. strftime format specifiers. Those selected in the Locale
column may differ dynamically according to locale runtime settings; see
subsection 8.6. Those selected in the ISO 8601 column are specified by
that standard.

Spec Meaning Locale ISO 8601
"%S" Second ("00" to "60")
"%M" Minute ("00" to "59")
"%H" Hour ("00" to "23").
"%I" Hour ("01" to "12").
"%e" Day of the month ("␣1" to "31")
"%d" Day of the month ("01" to "31")
"%m" Month ("01" to "12")
"%B" Full month name X
"%b" Abbreviated month name X
"%h" Equivalent to "%b" X
"%Y" Year
"%y" Year ("00" to "99")
"%C" Century number (year/100)
"%G" Week-based year; the same as "%Y", except if the ISO

week number belongs another year
X

"%g" Like "%G", ("00" to "99") X
"%u" Weekday ("1" to "7"), Monday being "1"
"%w" Weekday ("0" to "6", Sunday being "0"
"%A" Full weekday name X
"%a" Abbreviated weekday name X
"%j" Day of the year ("001" to "366")
"%U" Week number in the year ("00" to "53"), starting at Sun-

day
"%W" Week number in the year ("00" to "53"), starting at Mon-

day
"%V" Week number in the year ("01" to "53"), starting with

first four days in the new year
X

"%Z" Timezone name X
"%z" "+hhmm" or "-hhmm", the hour and minute offset from

UTC
"%n" Newline
"%t" Horizontal tabulator
"%%" Literal "%"
"%x" Date X
"%D" Equivalent to "%m/%d/%y"
"%F" Equivalent to "%Y-%m-%d" X
"%X" Time X
"%p" Either "AM" or "PM": noon is "PM", midnight is "AM" X
"%r" Equivalent to "%I:%M:%S␣%p" X
"%R" Equivalent to "%H:%M"
"%T" Equivalent to "%H:%M:%S" X
"%c" Preferred date and time representation X

8. C LIBRARY FUNCTIONS 113

bool havenv(char const name[static 1]) {
return getenv(name);

}

Instead, we use the secured function getenv_s: Annex K

errno_t getenv_s(size_t * restrict len ,
char value[restrict],
rsize_t maxsize ,
char const name[restrict]);

This function copies the value that corresponds to name (if any) from the environment
into value, a char[maxsize], provided that it fits. Printing such a value can look as this:

void printenv(char const name[static 1]) {
if (getenv(name)) {

char value [256] = { 0, };
if (getenv_s(0, value , sizeof value , name)) {

fprintf(stderr ,
"%s:␣value␣is␣longer␣than␣%zu\n",
name , sizeof value);

} else {
printf("%s=%s\n", name , value);

}
} else {

fprintf(stderr , "%s␣not␣in␣environment\n", name);
}

}

As you can see, after detecting whether the environment variable exists, getenv_s
can safely be called with the first argument set to 0. Additionally, it is guaranteed that the
value target buffer will only be written if the intended result fits in it. The len parameter
could be used to detect the real length that is needed, and dynamic buffer allocation could
be used to print out even large values. We will wait until higher levels to see such usages.

Which environment variables are available to programs depends heavily on the oper-
ating system. Commonly provided environment variables include "HOME" for the user’s
home directory, "PATH" for the collection of standard paths to executables, and "LANG" or
"LC_ALL" for the language setting.

The language or localeC setting is another important part of the execution environment
that a program execution inherits. At startup, C forces the locale setting to a normalized
value, called the "C" locale. It has basically American English choices for numbers or
times and dates.

The function setlocale from locale.h can be used to set or inspect the current <locale.h>

value:

char* setlocale(int category , char const locale[static 1]);

In addition to "C", the C standard prescribes the existence of one other valid value for
locale: the empty string "". This can be used to set the effective locale to the systems
default. The category argument can be used to address all or only parts of the language
environment. Table 8.14 gives an overview over the possible values and the part of the C
library they affect. Additional platform-dependent categories may be available.

8.7. Program termination and assertions. We have looked at the simplest way to
terminate a program: a regular return from main.

114 1. ACQUAINTANCE

TABLE 8.14. Categories for the setlocale function

LC_COLLATE String comparison through strcoll and strxfrm
LC_CTYPE Character classification and handling functions; see subsection 8.4.
LC_MONETARY Monetary formatting information, localeconv
LC_NUMERIC Decimal-point character for formatted I/O, localeconv
LC_TIME strftime; see subsection 8.5
LC_ALL All of the above

Takeaway 1.8.7.1 Regular program termination should use a return from main.

Using the function exit from within main is kind of senseless, because it can be done
just as easily with a return.

Takeaway 1.8.7.2 Use exit from a function that may terminate the regular control flow.

The C library has three other functions that terminate program execution, in order of
severity:

_Noreturn void quick_exit(int status);
_Noreturn void _Exit(int status);
_Noreturn void abort(void);

Now, return from main (or a call to exit) already provides the possibility to specify
whether the program execution is considered to be a success. Use the return value to
specify that; as long as you have no other needs or you don’t fully understand what these
other functions do, don’t use them. Really: don’t.

Takeaway 1.8.7.3 Don’t use functions other than exit for program termination, unless
you have to inhibit the execution of library cleanups.

Cleanup at program termination is important. The runtime system can flush and close
files that are written or free other resources that the program occupied. This is a feature
and should rarely be circumvented.

There is even a mechanism to install your own handlersC that are to be executed at
program termination. Two functions can be used for that:

int atexit(void func(void));
int at_quick_exit(void func(void));

These have a syntax we have not yet seen: function parametersC . For example, the
first reads “function atexit that returns an int and that receives a function func as a
parameter.”64

We will not go into detail here. An example will show how this can be used:

void sayGoodBye(void) {
if (errno) perror("terminating␣with␣error␣condition");
fputs("Good␣Bye\n", stderr);

}

int main(int argc , char* argv[argc +1]) {
atexit(sayGoodBye);
...

}

64In fact, in C, such a notion of a function parameter func to a function atexit is equivalent to passing
a function pointerC . In descriptions of such functions, you will usually see the pointer variant. For us, this
distinction is not yet relevant; it is simpler to think of a function being passed by reference.

SUMMARY 115

This uses the function atexit to establish the exit-handler sayGoodBye. After normal
termination of the program code, this function will be executed and give the status of the
execution. This might be a nice way to impress your co-workers if you are in need of
some respect. More seriously, this is the ideal place to put all kinds of cleanup code,
such as freeing memory or writing a termination timestamp to a log file. Observe that
the syntax for calling is atexit(sayGoodBye). There are no () for sayGoodBye itself:
here, sayGoodBye is not called at that point; only a reference to the function is passed to
atexit.

Under rare circumstances, you might want to circumvent these established atexit
handlers. There is a second pair of functions, quick_exit and at_quick_exit, that can
be used to establish an alternative list of termination handlers. Such an alternative list may
be useful if the normal execution of the handlers is too time consuming. Use with care.

The next function, _Exit, is even more severe: it inhibits both types of application-
specific handlers to be executed. The only things that are executed are the platform-specific
cleanups, such as file closure. Use this with even more care.

The last function, abort, is even more intrusive. Not only doesn’t it call the appli-
cation handlers, but also it inhibits the execution of some system cleanups. Use this with
extreme care.

At the beginning of this section, we looked at _Static_assert and
static_assert, which should be used to make compile-time assertions. They can test for
any form of compile-time Boolean expression. Two other identifiers come from assert.h <assert.h>

and can be used for runtime assertions: assert and NDEBUG. The first can be used to test for
an expression that must hold at a certain moment. It may contain any Boolean expression,
and it may be dynamic. If the NDEBUG macro is not defined during compilation, every
time execution passes by the call to this macro, the expression is evaluated. The functions
gcd and gcd2 from subsection 7.3 show typical use cases of assert: a condition that is
supposed to hold in every execution.

If the condition doesn’t hold, a diagnostic message is printed, and abort is called.
So, none of this should make it through into a production executable. From the earlier
discussion, we know that the use of abort is harmful, in general, and also an error message
such as

Terminal

0 assertion failed in file euclid.h, function gcd2(), line 6

is not very helpful for your customers. It is helpful during the debugging phase, where it
can lead you to spots where you make false assumptions about the values of variables.

Takeaway 1.8.7.4 Use as many assert s as you can to confirm runtime properties.

As mentioned, NDEBUG inhibits the evaluation of the expression and the call to abort.
Please use it to reduce overhead.

Takeaway 1.8.7.5 In production compilations, use NDEBUG to switch off all assert.

Summary

• The C library is interfaced via a bunch of header files.
• Mathematical functions are best used via the type-generic macros from tgmath.h.
• Input and output (IO) are interfaced via stdio.h. There are functions that do IO

as text or as raw bytes. Text IO can be direct or structured by formats.
• String processing uses functions from ctype.h for character classification, from
stdlib for numerical conversion, and from string.h for string manipulation.

116 1. ACQUAINTANCE

• Time handling in time.h has calendar time that is structured for human inter-
pretation, and physical time that is structured in seconds and nanoseconds.

• Standard C only has rudimentary interfaces to describe the execution environ-
ment of a running program; getenv provides access to environment variables,
and locale.h regulates the interface for human languages.

CHALLENGE 11 (Image segmentation). In addition to the C standard library, there are
many other support libraries out there that provide very different features. Among those are
a lot that do image processing of some kind. Try to find a suitable such image-processing
library that is written in or interfaced to C and that allows you to treat grayscale images
as two-dimensional matrices of base type unsigned char.
The goal of this challenge is to perform a segmentation of such an image: to group the pix-
els (the unsigned char elements of the matrix) into connected regions that are “similar”
in some sense or another. Such a segmentation forms a partition of the set of pixels, much
as we saw in challenge 4. Therefore, you should use a Union-Find structure to represent
regions, one per pixel at the start.
Can you implement a statistics function that computes a statistic for all regions? This
should be another array (the third array in the game) that for each root holds the number
of pixels and the sum of all values.
Can you implement a merge criterion for regions? Test whether the mean values of two
regions are not too far apart: say, no more than five gray values.
Can you implement a line-by-line merge strategy that, for each pixel on a line of the image,
tests whether its region should be merged to the left and/or to the top?
Can you iterate line by line until there are no more changes: that is, such that the resulting
regions/sets all test negatively with their respective neighboring regions?
Now that you have a complete function for image segmentation, try it on images with
assorted subjects and sizes, and also vary your merge criterion with different values for
the the mean distance instead of five.

LEVEL 2

Cognition

The Eurasian jay may be solitary or found in pairs. It is known for its
mimicry of other bird calls, for its alertness, and for its dispersal of
seeds that contribute to forest expansion.

Now we are advanced enough to go to the heart of C. Completing this level should
enable you to write C code professionally; it therefore begins with an essential discussion
about the writing and organization of C programs. Then it fills in the gaps for the major C
constructs that we have skipped so far: it fully explains pointers, familiarizes you with C’s
memory model and with dynamic memory allocation, and allows you to understand most
of C’s library interface.

117

118 2. COGNITION

9. Style

This section covers
• Writing readable code
• Formatting code
• Naming identifiers

Programs serve both sides: first, as we have already seen, they serve to give instruc-
tions to the compiler and the final executable. But equally important, they document the
intended behavior of a system for the people (users, customers, maintainers, lawyers, and
so on) who have to deal with it.

Therefore, we have a prime directive:

Takeaway C All C code must be readable.

The difficulty with that directive is knowing what constitutes “readable.” Not all ex-
perienced C programmers agree, so we will begin by trying to establish a minimal list of
necessities. The first things we must have in mind when discussing the human condition is
that it is constrained by two major factors: physical ability and cultural baggage.

Takeaway 2.9.0.1 Short-term memory and the field of vision are small.

Torvalds et al. [1996], the coding style for the Linux kernel, is a good example that
insists on that aspect and certainly is worth a detour, if you haven’t read it yet. Its main
assumptions are still valid: a programming text has to be represented in a relatively small
“window” (be it a console or a graphical editor) that consists of roughly 30 lines of 80
columns, making a “surface” of 2,400 characters. Everything that doesn’t fit has to be
memorized. For example, our very first program in listing 1.1 fits into these constraints.

By its humorous reference to Kernighan and Ritchie [1978], the Linux coding style
also refers to another fundamental fact:

Takeaway 2.9.0.2 Coding style is not a question of taste but of culture.

Ignoring this easily leads to endless and fruitless debates about not much at all.

Takeaway 2.9.0.3 When you enter an established project, you enter a new cultural space.

Try to adapt to the habits of the inhabitants. When you create your own project, you
have a bit of freedom to establish your own rules. But be careful if you want others to
adhere to them; you must not deviate too much from the common sense that reigns in the
corresponding community.

9.1. Formatting. The C language itself is relatively tolerant of formatting issues.
Under normal circumstances, a C compiler will dumbly parse an entire program that is
written on a single line with minimal white space and where all identifiers are composed
of the letter l and the digit 1. The need for code formatting originates in human incapacity.

Takeaway 2.9.1.1 Choose a consistent strategy for white space and other text format-
ting.

Formatting concerns indentation, placement of parentheses and all kinds of brackets
({}, [], and ()), spaces before and after operators, trailing spaces, and multiple new lines.
The human eye and brain are quite peculiar in their habits, and to ensure that they work
properly and efficiently, everything must be in sync.

In the introduction for level 1, you saw a lot of the coding style rules applied to the
code in this book. Take them as an example of one style; you will most likely encounter
other styles as you go along. Let us recall some of the rules and introduce some others that
have not yet been presented:

9. STYLE 119

• We use prefix notation for code blocks: that is, an opening { is at the end of a
line.

• We bind type modifiers and qualifiers to the left.
• We bind function () to the left, but () of conditions are separated from their

keyword (such as if or for) with a space.
• A ternary expression has spaces around the ? and the :.
• Punctuation marks (:, ;, and ,) have no space before them but either one space

or a new line after.
As you see, when written out, these rules can appear quite cumbersome and arbitrary.

They have no value as such; they are visual aids that help you and your collaborators
understand new code in the blink of an eye. They are not meant to be meticulously typed
by you directly, but you should acquire and learn the tools that can help you with them.

Takeaway 2.9.1.2 Have your text editor automatically format your code correctly.

I personally use Emacs (//gnu.org/software/emacs/) for that task (yes, I am that old).
For me, it is ideal since it understands a lot of the structure of a C program by itself. Your
mileage will probably vary, but don’t use a tool in everyday life that gives you less. Text
editors, integrated development environments (IDEs), and code generators are there for us,
not the other way around.

In bigger projects, you should enforce such a formatting policy for all the code that
circulates and is read by others. Otherwise, it will become difficult to track differences
between versions of programming text. This can be automated by command-line tools
that do the formatting. Here, I have a long-time preference for astyle (artistic style
http://sourceforge.net/projects/astyle/). Again, your mileage may vary; choose
anything that ensures the task.

9.2. Naming. The limit of such automatic formatting tools is reached when it comes
to naming.

Takeaway 2.9.2.1 Choose a consistent naming policy for all identifiers.

There are two different aspects to naming: technical restrictions on one hand and
semantic conventions on the other. Unfortunately, they are often mixed up and the subject
of endless ideological debate.

For C, various technical restrictions apply; they are meant to help you, so take them
seriously. First of all, we target all identifiers: types (struct or not), struct and union
members, variables, enumerations, macros, functions, function-like macros. There are so
many tangled name spacesC that you have to be careful.

In particular, the interaction between header files and macro definitions can have sur-
prising effects. Here is a seemingly innocent example:

1 double memory_sum(size_t N, size_t I, double strip[N][I]);

• N is a capitalized identifier, and thus your collaborator could be tempted to define
a macro N as a big number.

• I is used for the root of −1 as soon as someone includes complex.h. <complex.h>

• The identifier strip might be used by a C implementation for a library function
or macro.

• The identifier memory_sum might be used by the C standard for a type name in
the future.

Takeaway 2.9.2.2 Any identifier that is visible in a header file must be conforming.

https://www.gnu.org/software/emacs/
http://sourceforge.net/projects/astyle/
http://sourceforge.net/projects/astyle/

120 2. COGNITION

Here, conforming is a wide field. In C jargon, an identifier is reservedC if its meaning
is fixed by the C standard and you may not redefine it otherwise:

• Names starting with an underscore and a second underscore or a capital letter are
reserved for language extensions and other internal use.

• Names starting with an underscore are reserved for file scope identifiers and for
enum, struct and union tags.

• Macros have all-caps names.
• All identifiers that have a predefined meaning are reserved and cannot be used in

file scope. This includes a lot of identifiers, such as all functions in the C library,
all identifiers starting with str (like our strip, earlier), all identifiers starting
with E, all identifiers ending in _t, and many more.

What makes all of these rules relatively difficult is that you might not detect any vio-
lation for years; and then, all of a sudden, on a new client machine, after the introduction
of the next C standard and compiler or after a simple system upgrade, your code explodes.

A simple strategy to keep the probability of naming conflicts low is to expose as few
names as possible.

Takeaway 2.9.2.3 Don’t pollute the global space of identifiers.

Expose only types and functions as interfaces that are part of the application pro-
gramming interfaceC (APIC): that is, those that are supposed to be used by users of your
code.

A good strategy for a library that is used by others or in other projects is to use naming
prefixes that are unlikely to create conflicts. For example, many functions and types in the
POSIX thread API are prefixed with pthread_. For my tool box P99, I use the prefixes
p99_ and P99_ for API interfaces and p00_ and P00_ for internals.

There are two sorts of names that may interact badly with macros that another pro-
grammer writes and which you might not think of immediately:

• Member names of struct and union
• Parameter names in function interfaces.

The first point is the reason why the members in standard structures usually have
a prefix to their names: struct timespec has tv_sec as a member name, because an
uneducated user might declare a macro sec that would interfere in unpredictable way when
including time.h. For the second point, we saw an example earlier. In P99, I would specify<time.h>

such a function something like this:

1 double p99_memory_sum(size_t p00_n , size_t p00_i ,
2 double p00_strip[p00_n][p00_i]);

This problem gets worse when we are also exposing program internals to the public
view. This happens in two cases:

• So-called inline functions, which are functions whose definition (not only dec-
laration) is visible in a header file

• Function-like macros
We will discuss these features much later, see sections 15.1 and 16.

Now that we have clarified the technical points of naming, we will look at the semantic
aspect.

Takeaway 2.9.2.4 Names must be recognizable and quickly distinguishable.

That has two parts: distinguishable and quickly. Compare the identifiers in table 9.1.
For your personal taste, the answers on the right side of this table may be different.

This reflects my taste: an implicit context for such names is part of my personal expectation.

9. STYLE 121

Recognizable Distinguishable Quickly
lllll1llOll llllll1l0ll No No No
myLineNumber myLimeNumber Yes Yes No
n m Yes Yes Yes
ffs clz No Yes Yes
lowBit highBit Yes Yes Yes
p00Orb p00Urb No Yes No
p00_orb p00_urb Yes Yes Yes

TABLE 9.1. Some examples of well and badly distinguishable identifiers.

The difference between n and m on one side and for ffs and clz on the other is an implicit
semantic.

For me, because I have a heavily biased mathematical background, single-letter vari-
able names from i to n, such as n and m, are integer variables. These usually occur inside
a quite restricted scope as loop variables or similar. Having a single-letter identifier is fine
(we always have the declaration in view), and they are quickly distinguished.

The function names ffs and clz are different because they compete with all other
three-letter acronyms that could potentially be used for function names. Accidentally, here,
ffs is shorthand for find first (bit) set, but this is not immediately obvious to me. What
that it would mean is even less clear: which bit is first, the most significant bit or the least
significant?

There are several conventions that combine multiple words in one identifier. Among
the most commonly used are the following:

• Camel caseC , using internalCapitalsToBreakWords
• Snake caseC , using internal_underscores_to_break_words
• Hungarian notationC ,1 which encodes type information in the prefix of the iden-

tifiers, such as szName, where sz stands for string and zero terminated
As you might imagine, none of these is ideal. The first two tend to obscure our view:

they easily clog up a whole precious line of programming text with an unreadable expres-
sion:

1 return theVerySeldomlyUsedConstant*theVerySeldomlyUsedConstant/
number_of_elements;

Hungarian notation, in turn, tends to use obscure abbreviations for types or concepts,
produces unpronounceable identifiers, and completely breaks down if you have an API
change.

So, in my opinion, none of these rules or strategies have absolute values. I encourage
you to take a pragmatic approach to the question.

Takeaway 2.9.2.5 Naming is a creative act.

It is not easily subsumed by simple technical rules.
Obviously, good naming is more important the more widely an identifier is used. So,

it is particularly important for identifiers for which the declaration is generally out of view
of the programmer: global names that constitute the API.

Takeaway 2.9.2.6 File-scope identifiers must be comprehensive.

What constitutes comprehensive here should be derived from the type of the identi-
fier. Type names, constants, variables, and functions generally serve different purposes, so
different strategies apply.

1Invented in Simonyi [1976], the PhD thesis of Simonyi Károly

122 2. COGNITION

Takeaway 2.9.2.7 A type name identifies a concept.

Examples of such concepts are time for struct timespec, size for size_t, a col-
lection of corvidae for enum corvid, person for a data structure that collects data about
people, list for a chained list of items, dictionary for a query data structure, and so on. If
you have difficulty coming up with a concept for a data structure, an enumeration, or an
arithmetic type, you should probably revisit your design.

Takeaway 2.9.2.8 A global constant identifies an artifact.

That is, a constant stands out for some reason from the other possible constants of the
same type: it has a special meaning. It may have this meaning for some external reason
beyond our control (M_PI for π), because the C standard says so (false, true), because
of a restriction of the execution platform (SIZE_MAX), to be factual (corvid_num), for a
reason that is culturally motivated (fortytwo), or as a design decision.

Generally, we will see shortly that file-scope variables (globals) are much frowned
upon. Nevertheless, they are sometimes unavoidable, so we have to have an idea how to
name them.

Takeaway 2.9.2.9 A global variable identifies state.

Typical names for such variables are toto_initialized to encode the fact that library
toto has already been initialized, onError for a file-scope but internal variable that is set
in a library that must be torn down, and visited_entries for a hash table that collects
shared data.

Takeaway 2.9.2.10 A function or functional macro identifies an action.

Not all, but many, of the functions in the C standard library follow that rule and use
verbs as a component of their names. Here are some examples:

• A standard function that compares two strings is strcmp.
• A standard macro that queries for a property is isless.
• A function that accesses a data member could be called toto_getFlag.
• The corresponding one that sets such a member would be toto_setFlag.
• A function that multiples two matrices is matrixMult.

Summary

• Coding style is a matter of culture. Be tolerant and patient.
• Code formatting is a matter of visual habits. It should be automatically provided

by your environment such that you and your co-workers can read and write code
effortlessly.

• Naming of variables, functions, and types is an art and plays a central role in the
comprehensiveness of your code.

10. ORGANIZATION AND DOCUMENTATION 123

10. Organization and documentation

This section covers
• How to document interfaces
• How to explain implementations

Being an important societal, cultural, and economic activity, programming needs a
certain form of organization to be successful. As with coding style, beginners tend to
underestimate the effort that should be put into code and project organization and docu-
mentation: unfortunately, many of us have to go through the experience of reading our own
code some time after we wrote it, and not having any clue what it was all about.

Documenting or, more generally, explaining program code is not an easy task. We
have to find the right balance between providing context and necessary information and
boringly stating the obvious. Let’s have a look at the two following lines:

1 u = fun4you(u, i, 33, 28); // ;)
2 ++i; // incrementing i

The first line isn’t good, because it uses magic constants, a function name that doesn’t tell
what is going on, and a variable name that does not have much meaning, at least to me.
The smiley comment indicates that the programmer had fun when writing this, but it is not
very helpful to the casual reader or maintainer.

In the second line, the comment is superfluous and states what any even not-so-
experienced programmer knows about the ++ operator.

Compare this to the following:

1 /* 33 and 28 are suitable because they are coprime. */
2 u = nextApprox(u, i, 33, 28);
3 /* Theorem 3 ensures that we may move to the next step. */
4 ++i;

Here we may deduce a lot more. I’d expect u to be a floating-point value, probably
double: that is, subject to an approximation procedure. That procedure runs in steps, in-
dexed by i, and needs some additional arguments that are subject to a primality condition.

Generally, we have the what, what for, how, and in which manner rules, in order of
their importance:

Takeaway 2.10.0.1 (what) Function interfaces describe what is done.

Takeaway 2.10.0.2 (what for) Interface comments document the purpose of a function.

Takeaway 2.10.0.3 (how) Function code tells how the function is organized.

Takeaway 2.10.0.4 (in which manner) Code comments explain the manner in which func-
tion details are implemented.

In fact, if you think of a larger library project that is used by others, you’d expect that
all users will read the interface specification (such as in the synopsis part of a man page),
and most of them will read the explanation about these interfaces (the rest of the man page).
Much fewer of them will look at the source code and read about how or in which manner a
particular interface implementation does things the way it does them.

A first consequence of these rules is that code structure and documentation go hand
in hand. The distinction between interface specification and implementation is expecially
important.

124 2. COGNITION

Takeaway 2.10.0.5 Separate interface and implementation.

This rule is reflected in the use of two different kinds of C source files: header filesC ,
usually ending with ".h"; and translation unitsC (TU), ending with ".c".

Syntactical comments have two distinct roles in those two kinds of source files that
should be separated:

Takeaway 2.10.0.6 Document the interface – explain the implementation.

10.1. Interface documentation. In contrast to more recent languages such as Java
and Perl, C has no “built-in” documentation standard. But in recent years, a cross-platform
public domain tool has been widely adopted in many projects: doxygen (http://www.
doxygen.nl/). It can be used to automatically produce web pages, PDF manuals, depen-
dency graphs, and a lot more. But even if you don’t use doxygen or another equivalent
tool, you should use its syntax to document interfaces.

Takeaway 2.10.1.1 Document interfaces thoroughly.

Doxygen has a lot of categories that help with that, but an extended discussion goes
far beyond the scope of this book. Just consider the following example:

. heron_k.h

116 /**
117 ** @brief use the Heron process to approximate @a a to the
118 ** power of ˋ1/kˋ
119 **
120 ** Or in other words this computes the @f$k^{th}@f$ root of @a a

.
121 ** As a special feature , if @a k is ˋ-1ˋ it computes the
122 ** multiplicative inverse of @a a.
123 **
124 ** @param a must be greater than ˋ0.0ˋ
125 ** @param k should not be ˋ0ˋ and otherwise be between
126 ** ˋDBL_MIN_EXP*FLT_RDXRDXˋ and
127 ** ˋDBL_MAX_EXP*FLT_RDXRDXˋ.
128 **
129 ** @see FLT_RDXRDX
130 **/
131 double heron(double a, signed k);

Doxygen produces online documentation for that function that looks similar to fig-
ure 10.1 and also is able to produce formatted text that we can include in this book:

heron_k.h

heron: use the Heron process to approximate a to the power of 1/k

Or in other words this computes the kth root of a. As a special feature, if k is -1 it
computes the multiplicative inverse of a.

Parameters:
a must be greater than 0.0
k should not be 0 and otherwise be between

DBL_MIN_EXP*FLT_RDXRDX and DBL_MAX_EXP*FLT_RDXRDX.

See also: FLT_RDXRDX

double heron(double a, signed k);

http://www.doxygen.nl/
http://www.doxygen.nl/

10. ORGANIZATION AND DOCUMENTATION 125

heron_k.h

FLT_RDXRDX: the radix base 2 of FLT_RADIX

This is needed internally for some of the code below.

define FLT_RDXRDX something

As you have probably guessed, words starting with @ have a special meaning for doxy-
gen: they start its keywords. Here we have @param, @a, and @brief. The first documents a
function parameter, the second refers to such a parameter in the rest of the documentation,
and the last provides a brief synopsis of the function.

FIGURE 10.1. Documentation produced by doxygen

Additionally, we see that there is some markup capacity inside comments, and also
that doxygen was able to identify the place in translation unit "heron_k.c" that defines
the function and the call graph of the different functions involved in the implementation.

To provide good project organization, it is important that users of your code be able to
easily find connected pieces and not have to search all over the place.

Takeaway 2.10.1.2 Structure your code in units that have strong semantic connections.

Most often, this is simply done by grouping all functions that treat a specific data type
in one header file. A typical header file "brian.h" for struct brian would be like this:

1 #ifndef BRIAN_H
2 #define BRIAN_H 1
3 #include <time.h>
4
5 /** @file
6 ** @brief Following Brian the Jay
7 **/

126 2. COGNITION

8
9 typedef struct brian brian;

10 enum chap { sct , en, };
11 typedef enum chap chap;
12
13 struct brian {
14 struct timespec ts; /**< point in time */
15 unsigned counter; /**< wealth */
16 chap masterof; /**< occupation */
17 };
18
19 /**
20 ** @brief get the data for the next point in time
21 **/
22 brian brian_next(brian);
23
24 ...
25 #endif

That file comprises all the interfaces that are necessary to use the struct. It also includes
other header files that might be needed to compile these interfaces and protect against
multiple inclusion with include guardsC , here the macro BRIAN_H.

10.2. Implementation. If you read code that is written by good programmers (and
you should do that often!), you’ll notice that it is often scarcely commented. Nevertheless,
it may be quite readable, provided the reader has basic knowledge of the C language.
Good programming only needs to explain the ideas and prerequisites that are not obvious
(the difficult part). The structure of the code shows what it does and how.

Takeaway 2.10.2.1 Implement literally.

A C program is a descriptive text about what is to be done. The rules for naming
entities that we introduced earlier play a crucial role in making that descriptive text readable
and clear. Another requirement is to have an obvious flow of control through visually
clearly distinctive structuring in {} blocks that are linked together with comprehensive
control statements.

Takeaway 2.10.2.2 Control flow must be obvious.

There are many possibilities to obfuscate control flow. The most important are as
follows:
Buried jumps: – break, continue, return, and goto2 statements that are buried in a

complicated nested structure of if or switch statements, eventually combined
with loop structures.

Flyspeck expressions: – Controlling expressions that combine a lot of operators in an un-
usual way (for example, !!++*p-- or a --> 0) such that they must be examined
with a magnifying glass to understand where the control flow goes from here.

In the following subsection, we will focus on two concepts that can be crucial for
readability and performance of C code. A macro can be a convenient tool to abbreviate
a certain feature, but, if used carelessly, may also obfuscate code that uses it and trigger
subtle bugs (subsection 10.2.1). As we saw previously, functions are the primary choice in
C for modularization. Here, a particular property of some functions is especially important:
a function that is pure only interacts with the rest of the program via its interface. Thereby,

2These will be discussed in subsections 13.2.2 and 14.5.

10. ORGANIZATION AND DOCUMENTATION 127

pure functions are easily understandable by humans and compilers and generally lead to
quite efficient implementations (subsection 10.2.2).

10.2.1. Macros. We already know one tool that can be abused to obfuscate control
flow: macros. As you hopefully remember from subsections 5.6.3 and 8.1.2, macros define
textual replacements that can contain almost any C text. Because of the problems we
will illustrate here, many projects ban macros completely. This is not the direction the
evolution of the C standard goes, though. As we have seen, for example, type-generic
macros are the modern interface to mathematical functions (see 8.2); macros should be
used for initialization constants (5.6.3) or used to implement compiler magic (errno,
section 8.1.3).

So instead of denying it, we should try to tame the beast and set up some simple rules
that confine the possible damage.

Takeaway 2.10.2.3 Macros should not change control flow in a surprising way.

Notorious examples that pop up in discussion with beginners from time to time are
things like these:

1 #define begin {
2 #define end }
3 #define forever for (;;)
4 #define ERRORCHECK(CODE) if (CODE) return -1
5
6 forever
7 begin
8 // do something
9 ERRORCHECK(x);

10 end

Don’t do that. The visual habits of C programmers and our tools don’t easily work with
something like that, and if you use such things in complicated code, they will almost cer-
tainly go wrong.

Here, the ERRORCHECK macro is particularly dangerous. Its name doesn’t suggest that
a nonlocal jump such as a return might be hidden in there. And its implementation is
even more dangerous. Consider the following two lines:

1 if (a) ERRORCHECK(x);
2 else puts("a␣is␣0!");

These lines are rewritten as

1 if (a) if (x) return -1;
2 else puts("a␣is␣0!");

The else-clause (a so-called dangling elseC) is attached to the innermost if, which we
don’t see. So this is equivalent to

1 if (a) {
2 if (x) return -1;
3 else puts("a␣is␣0!");
4 }

which is probably quite surprising to the casual reader.
This doesn’t mean control structures shouldn’t be used in macros at all. They just

should not be hidden and should have no surprising effects. This macro by itself is probably
not as obvious, but its use has no surprises:

128 2. COGNITION

1 #define ERROR_RETURN(CODE) \
2 do { \
3 if (CODE) return -1; \
4 } while (false)

The name of the following macro makes it explicit that there might be a return. The
dangling else problem is handled by the replaced text:

1 if (a) ERROR_RETURN(x);
2 else puts("a␣is␣0!");

The next example structures the code as expected, with the else associated with the
first if:

1 if (a) do {
2 if (CODE) return -1;
3 } while (false);
4 else puts("a␣is␣0!");

The do-while(false)-trick is obviously ugly, and you shouldn’t abuse it. But it is a
standard trick to surround one or several statements with a {} block without changing the
block structure that is visible to the naked eye.

Takeaway 2.10.2.4 Function-like macros should syntactically behave like function calls.

Possible pitfalls are:
if without else: – Already demonstrated.
Trailing semicolons: – These can terminate an external control structure in a surprising

way.
Comma operators: The comma is an ambiguous fellow in C. In most contexts, it is used as

a list separator, such as for function calls, enumerator declarations, or initializers.
In the context of expressions, it is a control operator. Avoid it.

Continuable expressions: – Expressions that will bind to operators in an unexpected way
when put into a nontrivial context.[Exs 3] In the replacement text, put parentheses
around parameters and expressions.

Multiple evaluation: – Macros are textual replacements. If a macro parameter is used
twice (or more), its effects are done twice.[Exs 4]

10.2.2. Pure functions. Functions in C such as size_min (subsection 4.4) and gcd
(subsection 7.3), which we declared ourselves, have a limit in terms of what we are able to
express: they don’t operate on objects but rather on values. In a sense, they are extensions
of the value operators in table 4.1 and not of the object operators in table 4.2.

Takeaway 2.10.2.5 Function parameters are passed by value.

That is, when we call a function, all parameters are evaluated, and the parameters (vari-
ables that are local to the function) receive the resulting values as initialization. The func-
tion then does whatever it has to do and sends back the result of its computation through
the return value.

For the moment, the only possibility that we have for two functions to manipulate the
same object is to declare an object such that the declaration is visible to both functions.
Such global variablesC have a lot of disadvantages: they make code inflexible (the object
to operate on is fixed), are difficult to predict (the places of modification are scattered all
over), and are difficult to maintain.

[Exs 3]Consider a macro sum(a, b) that is implemented as a+b. What is the result of sum(5, 2)*7?
[Exs 4]Let max(a, b) be implemented as ((a) < (b) ? (b) : (a)). What happens for max(i++, 5)?

10. ORGANIZATION AND DOCUMENTATION 129

Takeaway 2.10.2.6 Global variables are frowned upon.

A function with the following two properties is called pureC :
• The function has no effects other than returning a value.
• The function return value only depends on its parameters.

The only interest in the execution of a pure function is its result, and that result only de-
pends on the arguments that are passed. From the point of view of optimization, pure
functions can be moved around or even executed in parallel to other tasks. Execution can
start at any point when its parameters are available and must be finished before the result
is used.

Effects that would disqualify a function from being pure would be all those that change
the abstract state machine other than by providing the return value. For example,

• The function reads part of the program’s changeable state by means other than
through its arguments.

• The function modifies a global object.
• The function keeps a persistent internal state between calls.5

• The function does IO.6

Pure functions are a very good model for functions that perform small tasks, but they
are pretty limited once we have to perform more complex ones. On the other hand, optimiz-
ers love pure functions, since their impact on the program state can simply be described by
their parameters and return value. The influence on the abstract state machine that a pure
function can have is very local and easy to describe.

Takeaway 2.10.2.7 Express small tasks as pure functions whenever possible.

With pure functions, we can go surprisingly far, even for an object-oriented program-
ming style, if for a first approach we are willing to accept a little bit of copying data
around. Consider the following structure type rat that is supposed to be used for rational
arithmetic:

. rationals.h

8 struct rat {
9 bool sign;

10 size_t num;
11 size_t denom;
12 };

This is a direct implementation of such a type, and nothing you should use as a library
outside the scope of this learning experience. For simplicity, it has a numerator and de-
nominator of identical type (size_t) and keeps track of the sign of the number in member
.sign. A first (pure) function is rat_get, which takes two numbers and returns a rational
number that represents their quotient:

As you can see, the function is quite simple. It just initializes a compound literal
with the correct sign and numerator and denominator values. Notice that if we define a
rational number this way, several representations will represent the same rational number.
For example, the number 6

15 is the same as 2
5 .

To deal with this equivalence in the representations, we need functions that do main-
tenance. The main idea is that such rational numbers should always be normalized: that

5Persistent state between calls to the same function can be established with local static variables. We will
see this concept in subsection 13.2.

6Such an IO would occur, for example, by using printf.

130 2. COGNITION

. rationals.c

3 rat rat_get(long long num , unsigned long long denom) {
4 rat ret = {
5 .sign = (num < 0),
6 .num = (num < 0) ? -num : num ,
7 .denom = denom ,
8 };
9 return ret;

10 }

is, use the representation such that numerator and denominator have the fewest factors.
Not only is this easier for humans to capture, but it also may avoid overflows while doing
arithmetic:

. rationals.c

12 rat rat_get_normal(rat x) {
13 size_t c = gcd(x.num , x.denom);
14 x.num /= c;
15 x.denom /= c;
16 return x;
17 }

Here, the gcd function is as we described earlier.
Another function does the inverse of normalization; it multiplies the numerator and

denominator by a redundant factor:

. rationals.c

19 rat rat_get_extended(rat x, size_t f) {
20 x.num *= f;
21 x.denom *= f;
22 return x;
23 }

This way, we may define functions that are supposed to be used by others: rat_get_prod
and rat_get_sum.

Have a look at rat_get_prod:

. rationals.c

25 rat rat_get_prod(rat x, rat y) {
26 rat ret = {
27 .sign = (x.sign != y.sign),
28 .num = x.num * y.num ,
29 .denom = x.denom * y.denom ,
30 };
31 return rat_get_normal(ret);
32 }

10. ORGANIZATION AND DOCUMENTATION 131

It first computes a representation of the result in a simple way: by just multiplying
numerators and denominators, respectively. Then, the resulting representation might not
be normalized, so we call rat_get_normal when we return the result.

Now rat_get_sum is a bit more complicated. We have to find the common denomi-
nator before we can compute the numerator of the result:

. rationals.c

34 rat rat_get_sum(rat x, rat y) {
35 size_t c = gcd(x.denom , y.denom);
36 size_t ax = y.denom/c;
37 size_t bx = x.denom/c;
38 x = rat_get_extended(x, ax);
39 y = rat_get_extended(y, bx);
40 assert(x.denom == y.denom);
41
42 if (x.sign == y.sign) {
43 x.num += y.num;
44 } else if (x.num > y.num) {
45 x.num -= y.num;
46 } else {
47 x.num = y.num - x.num;
48 x.sign = !x.sign;
49 }
50 return rat_get_normal(x);
51 }

Also, we have to keep track of the signs of the two rational numbers to see how we
should add up the numerators.

As you can see, the fact that these are all pure functions ensures that they can be easily
used, even in our own implementation here. The only thing we have to watch is to always
assign the return values of our functions to a variable, such as on line 38. Otherwise, since
we don’t operate on the object x but only on its value, changes during the function would
be lost.[Exs 7] [Exs 8]

As mentioned earlier, because of the repeated copies, this may result in compiled code
that is not as efficient as it could. But this is not dramatic at all: the overhead from the
copy operation can be kept relatively low by good compilers. With optimization switched
on, they usually can operate directly on the structure in place, as it is returned from such a
function. Then such worries might be completely premature, because your program is short
and sweet anyhow, or because its real performance problems lay elsewhere. Usually this
should be completely sufficient for the level of programming skills that we have reached so
far. Later, we will learn how to use that strategy efficiently by using the inline functions
(subsection 15.1) and link-time optimization that many modern tool chains provide.

Listing 10.1 lists all the interfaces of the rat type that we have seen so far (first group).
We have already looked at the interfaces to other functions that work on pointers to rat.
These will be explained in more detail in subsection 11.2.

[Exs 7]The function rat_get_prod can produce intermediate values that may cause it to produce wrong results,
even if the mathematical result of the multiplication is representable in rat. How is that?
[Exs 8]Reimplement the rat_get_prod function such that it produces a correct result every time the mathematical
result value is representable in a rat. This can be done with two calls to rat_get_normal instead of one.

132 2. COGNITION

LISTING 10.1. A type for computation with rational numbers.

1 #ifndef RATIONALS_H
2 # define RATIONALS_H 1
3 # include <stdbool.h>
4 # include "euclid.h"
5
6 typedef struct rat rat;
7
8 struct rat {
9 bool sign;

10 size_t num;
11 size_t denom;
12 };
13
14 /* Functions that return a value of type rat. */
15 rat rat_get(long long num , unsigned long long denom);
16 rat rat_get_normal(rat x);
17 rat rat_get_extended(rat x, size_t f);
18 rat rat_get_prod(rat x, rat y);
19 rat rat_get_sum(rat x, rat y);
20
21
22 /* Functions that operate on pointers to rat. */
23 void rat_destroy(rat* rp);
24 rat* rat_init(rat* rp,
25 long long num ,
26 unsigned long long denom);
27 rat* rat_normalize(rat* rp);
28 rat* rat_extend(rat* rp, size_t f);
29 rat* rat_sumup(rat* rp, rat y);
30 rat* rat_rma(rat* rp, rat x, rat y);
31
32 /* Functions that are implemented as exercises. */
33 /** @brief Print @a x into @a tmp and return tmp. **/
34 char const* rat_print(size_t len , char tmp[len], rat const* x);
35 /** @brief Print @a x normalize and print. **/
36 char const* rat_normalize_print(size_t len , char tmp[len],
37 rat const* x);
38 rat* rat_dotproduct(rat rp[static 1], size_t n,
39 rat const A[n], rat const B[n]);
40
41 #endif

Summary

• For each part of a program, we have to distinguish the object (what are we do-
ing?), the purpose (what are we doing it for?), the method (how are we doing it?)
and the implementation (in which manner are we doing it?).

• The function and type interfaces are the essence of software design. Changing
them later is expensive.

• An implementation should be as literal as possible and obvious in its control flow.
Complicated reasoning should be avoided and made explicit where necessary.

11. POINTERS 133

11. Pointers

This section covers
• Introduction to pointer operations
• Using pointers with structs, arrays, and functions

Pointers are the first real hurdle to a deeper understanding of C. They are used in
contexts where we have to be able to access objects from different points in the code, or
where data is structured dynamically on the fly.

The confusion of inexperienced programmers between pointers and arrays is notori-
ous, so be warned that you might encounter difficulties in getting the terms correct. On the
other hand, pointers are one of the most important features of C. They are a big plus to help
us abstract from the bits and odds of a particular platform and enable us to write portable
code. So please, equip yourself with patience when you work through this section, because
it is crucial for the understanding of most of the rest of this book.

The term pointerC stands for a special derived type construct that “points” or “refers”
to something. We have seen the syntax for this construct, a type (the referenced typeC)
that is followed by a * character. For example, p0 is a pointer to a double:

double* p0;

The idea is that we have one variable (the pointer) that points to the memory of another
object:

p0 −→ double

An import distinction that we will have to make throughout this section is between the
pointer (on the left of the arrow) and the unnamed object that is pointed to (on the right).

Our first usage of a pointer will be to break the barrier between the code of the caller
of a function and the code inside a function, and thus allow us to write functions that are
not pure. This example will be a function with this prototype:

void double_swap(double* p0, double* p1);

Here we see two function arguments that “point” to objects of type double. In the example,
the function double_swap is supposed to interchange (swap) the contents of these two
objects. For example, when the function is called, p0 and p1 could be pointing to double
variables d0 and d1, respectively, that are defined by the caller:

p0 −→
d0

double 3.5
d1

double 10 ←− p1

By receiving information about two such objects, the function double_swap can effectively
change the contents of the two double objects without changing the pointers themselves:

p0 −→
d0

double 10
d1

double 3.5 ←− p1

Using pointers, the function will be able to apply the change directly to the variables of the
calling function; a pure function without pointers or arrays would not be able to do this.

In this section, we will go into the details of different operations with pointers (sub-
section 11.1) and specific types for which pointers have particular properties: structures
(subsection 11.2), arrays (subsection 11.3), and functions (subsection 11.4).

11.1. Pointer operations. Pointers are an important concept, so there are several C
language operations and features just for them. Most importantly, specific operators allow
us to deal with the “pointing-to” and “pointed-to” relation between pointers and the objects

134 2. COGNITION

to which they point (subsection 11.1.1). Also, pointers are considered scalarsC : arithmetic
operations are defined for them, offset additions (subsection 11.1.2) and subtractions (sub-
section 11.1.3); they have state (subsection 11.1.4); and they have a dedicated “null” state
(subsection 11.1.5).

11.1.1. Address-of and object-of operators. If we have to perform tasks that can’t be
expressed with pure functions, things get more involved. We have to poke around in objects
that are not variables of the function. Pointers are a suitable abstraction to do this.

So, let us use the function double_swap from earlier to swap the contents of two
double objects d0 and d1. For the call, we use the unary address-ofC operator “&”. It
allows us to refer to an object through its addressC . A call to our function could look like
this:

double_swap (&d0, &d1);

The type that the address-of operator returns is a pointer typeC and can be specified
with the * notation that we have seen. An implementation of the function could look like
this: Inside the function, pointers p0 and p1 hold the addresses of the objects on which

void double_swap(double* p0, double* p1) {
double tmp = *p0;
*p0 = *p1;
*p1 = tmp;

}

the function is supposed to operate: in our example, the addresses of d0 and d1. But the
function knows nothing about the names of the two variables d0 and d1; it only knows p0
and p1.

p0 −→
<unknown>

double 3.5
<unknown>

double 10 ←− p1

To access them, another construct that is the inverse of the address-of operator is used:
the unary object-ofC operator “*”: *p0 then is the object corresponding to the first argu-
ment. With the previous call, that would be d0, and similarly *p1 is the object d1.[Exs 9]

p0 −→
*p0

double 3.5
*p1

double 10 ←− p1

Please note that the * character plays two different roles in the definition of double_swap.
In a declaration, it creates a new type (a pointer type), whereas in an expression it dereferencesC
the object to which a pointer refersC . To help distinguish these two usages of the same
symbol, we usually flush the * to the left with no blanks in between if it modifies a type
(such as double*) and to the right if it dereferences a pointer (*p0).

Remember from subsection 6.2 that in addition to holding a valid address, pointers
may also be null or indeterminate.

Takeaway 2.11.1.1 Using * with an indeterminate or null pointer has undefined behav-
ior.

In practice, though, both cases will usually behave differently. The first might access a
random object in memory and modify it. Often this leads to bugs that are difficult to trace
because it will poke into objects it is not supposed to. The second, if the pointer is null,
will manifest early during development and nicely crash our program. Consider this to be
a feature.

[Exs 9]Write a function that receives pointers to three objects and that shifts the values of these objects cyclically.

11. POINTERS 135

11.1.2. Pointer addition. We already have seen that a valid pointer holds the address
of an object of its reference type, but actually C assumes more than that:

Takeaway 2.11.1.2 A valid pointer refers to the first element of an array of the reference
type.

Or, in other words, a pointer may be used to refer not only to one instance of the
reference type, but also to an array of an unknown length n.

p0 −→
0

double · · · · · · · · ·
n−1

double

This entanglement between the concept of pointers and arrays is taken an important step
further in the syntax. In fact, for the specification of the function double_swap, we
wouldn’t even need the pointer notation. In the notation we have used so far, it can equally
be written as

void double_swap(double p0[static 1], double p1[static 1]) {
double tmp = p0[0];
p0[0] = p1[0];
p1[0] = tmp;

}

Both the use of array notation for the interface and the use of [0] to access the first element
are simple rewrite operationsC that are built into the C language. We will see more of this
later.

Simple additive arithmetic allows us to access the following elements of this array.
This function sums all elements of an array:

double sum0(size_t len , double const* a) {
double ret = 0.0;
for (size_t i = 0; i < len; ++i) {

ret += *(a + i);
}
return ret;

}

Here, the expression a+i is a pointer that points to the ith element in the array:

a −→
0

double · · · · · · · · ·
i

double · · · · · · · · ·
len−1

double

↑
a + i

Pointer addition can be done in different ways, so the following functions sum up the
array in exactly the same order:

double sum1(size_t len , double const* a) {
double ret = 0.0;
for (double const* p = a; p < a+len; ++p) {

ret += *p;
}
return ret;

}

double sum2(size_t len , double const* a) {
double ret = 0.0;
for (double const*const aStop = a+len; a < aStop; ++a) {

136 2. COGNITION

ret += *a;
}
return ret;

}

In iteration i of function sum1, we have the following picture:

a −→
0

double · · · · · · · · ·
i

double · · · · · · · · ·
len−1

double
↑ ↑
p a+len

The pointer p walks through the elements of the array until it is greater than or equal to
a+len, the first pointer value that lies beyond the array.

For function sum2, we have the following picture:
0

double · · · · · · · · ·
i

double · · · · · · · · ·
len−1

double
↑ ↑
a aStop

Here, a refers to the ith element of the array. The 0th element is not referenced again inside
the function, but the information about the end of the array is kept in the variable aStop.

These functions can then be called analogously to the following:

double A[7] = { 0, 1, 2, 3, 4, 5, 6, };
double s0_7 = sum0(7, &A[0]); // For the whole
double s1_6 = sum0(6, &A[1]); // For the last 6
double s2_3 = sum0(3, &A[2]); // For the 3 in the middle

Unfortunately, there is no way to know the length of the array that is hidden behind
a pointer, so we have to pass it as a parameter into the function. The trick with sizeof,
which we saw in subsection 6.1.3, doesn’t work.

Takeaway 2.11.1.3 The length of an array object cannot be reconstructed from a pointer.

So here, we see a first important difference from arrays.

Takeaway 2.11.1.4 Pointers are not arrays.

If we pass arrays through pointers to a function, it is important to retain the real length
of the array. This is why we prefer the array notation for pointer interfaces throughout this
book:

double sum0(size_t len , double const a[len]);
double sum1(size_t len , double const a[len]);
double sum2(size_t len , double const a[len]);

These specify exactly the same interfaces as shown earlier, but they clarify to the casual
reader of the code that a is expected to have len elements.

11.1.3. Pointer subtraction and difference. Pointer arithmetic we have discussed so
far concerned addition of an integer and a pointer. There is also an inverse operation that
can subtract an integer from a pointer. If we wanted to visit the elements of the array
downward, we could use this:

double sum3(size_t len , double const* a) {
double ret = 0.0;
double const* p = a+len-1;

11. POINTERS 137

do {
ret += *p;
--p;

} while (p > a);
return ret;

}

Here, p starts out at a+(len-1), and in the ith iteration the picture is:

a −→
0

double · · · · · · · · ·
(len−1)−i

double · · · · · · · · ·
len−1

double
↑ ↑
p a+(len-1)

Note that the summation order in this function is inverted.10

There is also an operation, pointer differenceC , that takes two pointers and evaluates
to an integer value their distance apart in number of elements. To see that, we extend
sum3 to a new version that checks for an error condition (one of the array elements being
an infinity). In that case, we want to print a comprehensive error message and return the
culprit to the caller:11

double sum4(size_t len , double const* a) {
double ret = 0.0;
double const* p = a+len-1;
do {

if (isinf (*p)) {
fprintf(stderr ,

"element␣\%tu␣of␣array␣at␣\%p␣is␣infinite\n",
p-a, // Pointer difference!
(void*)a); // Prints the pointer value

return *p;
}
ret += *p;
--p;

} while (p > a);
return ret;

}

Here, we use the expression p-a to compute the position of the actual element in the array.
This is allowed only if the two pointers refer to elements of the same array object:

Takeaway 2.11.1.5 Only subtract pointers from elements of an array object.

The value of such a difference then is simply the difference of the indices of the cor-
responding array elements:

double A[4] = { 0.0, 1.0, 2.0, -3.0, };
double* p = &A[1];
double* q = &A[3];
assert(p-q == -2);

We have stressed the fact that the correct type for sizes of objects is size_t, an un-
signed type that on many platforms is different from unsigned. This has its correspon-
dence in the type of a pointer difference: in general, we cannot assume that a simple int
is wide enough to hold the possible values. Therefore, the standard header stddef.h pro- <stddef.h>

vides us with another type. On most architectures, it is just the signed integer type that
corresponds to size_t, but we shouldn’t care much.

10Because of differences in rounding, the result might be slightly different than for the first three functions in
this series.

11isinf comes from the math.h header.

138 2. COGNITION

Takeaway 2.11.1.6 All pointer differences have type ptrdiff_t.

Takeaway 2.11.1.7 Use ptrdiff_t to encode signed differences of positions or sizes.

Function sum4 also shows a recipe to print a pointer value for debugging purposes. We
use the format character %p, and the pointer argument is cast by (void*)a to the obscure
type void*. For the moment, take this recipe as a given; we do not yet have all the baggage
to understand it in full (more details will follow in subsection 12.4).

Takeaway 2.11.1.8 For printing, cast pointer values to void*, and use the format %p.

11.1.4. Pointer validity. Earlier (takeaway 2.11.1.1), we saw that we must be careful
about the address that a pointer contains (or does not contain). Pointers have a value, the
address they contain, and that value can change.

Setting a pointer to 0 if it does not have a valid address is very important and should
not be forgotten. It helps to check and keep track of whether a pointer has been set.

Takeaway 2.11.1.9 Pointers have truth.

To avoid clunky comparisons (takeaway 1.3.1.3), in C programs you often will see
code like this:

char const* name = 0;

// Do something that eventually sets name

if (name) {
printf("today's␣name␣is␣%s\n", name);

} else {
printf("today␣we␣are␣anonymous\n");

}

Therefore, it is important to control the state of all pointer variables. We have to ensure
that pointer variables are always null, unless they point to a valid object that we want to
manipulate.

Takeaway 2.11.1.10 Set pointer variables to 0 as soon as you can.

In most cases, the simplest way to ensure this is to initialize pointer variables explicitly
(takeaway 1.6.2.6).

We have seen some examples of representations of different types: that is, the way the
platform stores the value of a particular type in an object. The representation of one type,
size_t, say, could be completely senseless to another type, for example double. As long
as we only use variables directly, C’s type system will protect us from any mixup of these
representations; a size_t object will always be accessed as such and never be interpreted
as a (senseless) double.

If we did not use them carefully, pointers could break that barrier and lead us to code
that tries to interpret the representation of a size_t as double. More generally, C even has
coined a term for bit patterns that are nonsense when they are interpreted as a specific type:
a trap representationC for that type. This choice of words (trap) is meant to intimidate.

Takeaway 2.11.1.11 Accessing an object that has a trap representation of its type has
undefined behavior.

Ugly things can happen if you do, so please don’t try.
Thus, not only must a pointer be set to an object (or null), but such an object also must

have the correct type.

11. POINTERS 139

Takeaway 2.11.1.12 When dereferenced, a pointed-to object must be of the designated
type.

As a direct consequence, a pointer that points beyond array bounds must not be deref-
erenced:

double A[2] = { 0.0, 1.0, };
double* p = &A[0];
printf("element␣%g\n", *p); // Referencing object
++p; // Valid pointer
printf("element␣%g\n", *p); // Referencing object
++p; // Valid pointer , no object
printf("element␣%g\n", *p); // Referencing non-object

// Undefined behavior

Here, on the last line, p has a value that is beyond the bounds of the array. Even if
this might be the address of a valid object, we don’t know anything about the object it is
pointing to. So even if p is valid at that point, accessing the contents as a type of double
makes no sense, and C generally forbids such access.

In the previous example, the pointer addition itself is correct, as long as we don’t
access the object on the last line. The valid values of pointers are all addresses of array
elements and the address beyond the array. Otherwise, for loops with pointer addition as
in the example wouldn’t work reliably.

Takeaway 2.11.1.13 A pointer must point to a valid object or one position beyond a
valid object or be null.

So the example only worked up to the last line because the last ++p left the pointer
value just one element after the array. This version of the example still follows a similar
pattern as the one before:

double A[2] = { 0.0, 1.0, };
double* p = &A[0];
printf("element␣%g\n", *p); // Referencing object
p += 2; // Valid pointer , no object
printf("element␣%g\n", *p); // Referencing non-object

// Undefined behavior

Whereas this last example may crash at the increment operation:

double A[2] = { 0.0, 1.0, };
double* p = &A[0];
printf("element␣%g\n", *p); // Referencing object
p += 3; // Invalid pointer addition

// Undefined behavior

11.1.5. Null pointers. You may have wondered why, in all this discussion about point-
ers, the macro NULL has not yet been used. The reason is that, unfortunately, the simple
concept of a “generic pointer of value 0” didn’t succeed very well.

C has the concept of a null pointerC that corresponds to a 0 value of any pointer
type.12 Here,

double const*const nix = 0;
double const*const nax = nix;

nix and nax would be pointer objects of value 0. But unfortunately, a null pointer constantC
is then not what you’d expect.

12Note the different capitalization of null versus NULL.

140 2. COGNITION

First, here the term constant refers to a compile-time constant, not to a const-qualified
object. So for that reason, both pointer objects are not null pointer constants. Second, the
permissible type for these constants is restricted: it may be any constant expression of
integer type or of type void*. Other pointer types are not permitted, and we will learn
about pointers of that “type” in subsection 12.4.

The definition in the C standard of a possible expansion of the macro NULL is quite
loose; it just has to be a null pointer constant. Therefore, a C compiler could choose any
of the following for it:

Expansion Type
0U unsigned
0 signed
'\0'
Enumeration constant of value 0
0UL unsigned long
0L signed long
0ULL unsigned long long
0LL signed long
(void*)0 void*

Commonly used values are 0, 0L, and (void*)0.13

It is important that the type behind NULL is not prescribed by the C standard. Often,
people use it to emphasize that they are talking about a pointer constant, which it simply
isn’t on many platforms. Using NULL in a context that we have not mastered completely is
even dangerous. This will in particular appear in the context of functions with a variable
number of arguments, which will be discussed in subsection 16.5.2. For the moment, we
will go for the simplest solution:

Takeaway 2.11.1.14 Don’t use NULL.

NULL hides more than it clarifies. Either use 0 or, if you really want to emphasize that
the value is a pointer, use the magic token sequence (void*)0 directly.

11.2. Pointers and structures. Pointers to structure types are crucial for most cod-
ing in C, so some specific rules and tools have been put in place to ease this typical usage.
For example, let us consider the task of normalizing a struct timespec as we have en-
countered it previously. The use of a pointer parameter in the following function allows us
to manipulate the objects directly:

. timespec.c

10 /**
11 ** @brief compute a time difference
12 **
13 ** This uses a @c double to compute the time. If we want to
14 ** be able to track times without further loss of precision
15 ** and have @c double with 52 bit mantissa , this
16 ** corresponds to a maximal time difference of about 4.5E6
17 ** seconds , or 52 days.
18 **
19 **/
20 double timespec_diff(struct timespec const* later ,
21 struct timespec const* sooner){
22 /* Be careful: tv_sec could be an unsigned type */
23 if (later->tv_sec < sooner->tv_sec)
24 return -timespec_diff(sooner , later);

13In theory, there are even more possible expansions for NULL, such as ((char)+0) and ((short)-0).

11. POINTERS 141

25 else
26 return
27 (later->tv_sec - sooner->tv_sec)
28 /* tv_nsec is known to be a signed type. */
29 + (later->tv_nsec - sooner->tv_nsec) * 1E-9;
30 }

For convenience, here we use a new operator, ->. Its arrow-like symbol is meant to
represent a pointer as the left operand that “points” to a member of the underlying struct
as the right operand. It is equivalent to a combination of * and .. To have the same effect,
we would have to use parentheses and write (*a).tv_sec instead of a->tv_sec. This
could quickly become a bit clumsy, so the -> operator is what everybody uses.

a −→
tv_sec

time_t
tv_nsec

long

| |
| a->tv_nsec
a->tv_sec

Observe that a construct like a->tv_nsec is not a pointer, but an object of type long, the
number itself.

As another example, let us again consider the type rat for rational numbers that we
introduced in subsection 10.2.2. The functions operating on pointers to that type in list-
ing 10.1 could be written as follows:

. rationals.c

95 void rat_destroy(rat* rp) {
96 if (rp) *rp = (rat){ 0 };
97 }

The function rat_destroy ensures that all data that might be present in the object is erased
and set to all-bits 0:

. rationals.c

99 rat* rat_init(rat* rp,
100 long long num ,
101 unsigned long long denom) {
102 if (rp) *rp = rat_get(num , denom);
103 return rp;
104 }

. rationals.c

106 rat* rat_normalize(rat* rp) {
107 if (rp) *rp = rat_get_normal (*rp);
108 return rp;
109 }

142 2. COGNITION

. rationals.c

111 rat* rat_extend(rat* rp, size_t f) {
112 if (rp) *rp = rat_get_extended (*rp, f);
113 return rp;
114 }

The other three functions are simple wrappersC around the pure functions that we
already know. We use two pointer operations to test validity and then, if the pointer is
valid, to refer to the object in question. So, these functions can be safely used, even if the
pointer argument is null.[Exs 14][Exs 15]

All four functions check and return their pointer argument. This is a convenient strat-
egy to compose such functions, as we can see in the definitions of the following two arith-
metic functions:

. rationals.c

135 rat* rat_rma(rat* rp, rat x, rat y) {
136 return rat_sumup(rp, rat_get_prod(x, y));
137 }

The function rat_rma (“rational multiply add”) comprehensively shows its purpose:
to add the product of the two other function arguments to the object referred to by rp. It
uses the following function for the addition:

. rationals.c

116 rat* rat_sumup(rat* rp, rat y) {
117 size_t c = gcd(rp->denom , y.denom);
118 size_t ax = y.denom/c;
119 size_t bx = rp->denom/c;
120 rat_extend(rp, ax);
121 y = rat_get_extended(y, bx);
122 assert(rp->denom == y.denom);
123
124 if (rp->sign == y.sign) {
125 rp->num += y.num;
126 } else if (rp->num > y.num) {
127 rp->num -= y.num;
128 } else {
129 rp->num = y.num - rp->num;
130 rp->sign = !rp->sign;
131 }
132 return rat_normalize(rp);
133 }

The function rat_sumup is a more complicated example, where we apply two main-
tenance functions to the pointer arguments.[Exs 16]

Another special rule applies to pointers to structure types: they can be used even if
the structure type itself is unknown. Such opaque structuresC are often used to strictly
separate the interface of a library and its implementation. For example, a fictive type toto
could be presented in an include file as follows:

[Exs 14]Implement function rat_print as declared in listing 10.1. This function should use -> to access the mem-
bers of its rat* argument. The printout should have the form ±nom/denum.

[Exs 15]Implement rat_print_normalized by combining rat_normalize and rat_print.
[Exs 16]Implement the function rat_dotproduct from listing 10.1 such that it computes

∑n−1
i=0 A[i] ∗ B[i] and

returns that value in *rp.

11. POINTERS 143

/* forward declaration of struct toto */
struct toto;
struct toto* toto_get(void);
void toto_destroy(struct toto*);
void toto_doit(struct toto*, unsigned);

Neither the programmer nor the compiler would need more than that to use the type
struct toto. The function toto_get could be used to obtain a pointer to an object of
type struct toto, regardless how it might have been defined in the compilation unit that
defines the functions. And the compiler gets away with it because it knows that all point-
ers to structures have the same representation, regardless of the specific definition of the
underlying type.

Often, such interfaces use the fact that null pointers are special. In the previous ex-
ample, toto_doit(0, 42) could be a valid use case. This is why many C programmers
don’t like it if pointers are hidden inside typedef:

/* forward declaration of struct toto_s and user type toto */
typedef struct toto_s* toto;
toto toto_get(void);
void toto_destroy(toto);
void toto_doit(toto , unsigned);

This is valid C, but it hides the fact that 0 is a special value that toto_doit may
receive.

Takeaway 2.11.2.1 Don’t hide pointers in a typedef.

This is not the same as just introducing a typedef name for the struct, as we have
done before:

/* forward declaration of struct toto and typedef toto */
typedef struct toto toto;
toto* toto_get(void);
void toto_destroy(toto*);
void toto_doit(toto*, unsigned);

Here, the fact that the interface receive a pointer is still sufficiently visible.

CHALLENGE 12 (text processor). For a text processor, can you use a doubly linked list
to store text? The idea is to represent a “blob” of text through a struct that contains a
string (for the text) and pointers to preceding and following blobs.
Can you build a function that splits a text blob in two at a given point?
One that joins two consecutive text blobs?
One that runs through the entire text and puts it in the form of one blob per line?
Can you create a function that prints the entire text or prints until the text is cut off due to
the screen size?

11.3. Pointers and arrays. We are now able to attack the major hurdles to under-
standing the relationship between arrays and pointers: the fact that C uses the same syntax
for pointer and array element access and that it rewrites array parameters of functions to
pointers. Both features provide convenient shortcuts for the experienced C programmer
but also are a bit difficult for novices to digest.

144 2. COGNITION

11.3.1. Array and pointer access are the same. The following statement holds regard-
less of whether A is an array or a pointer:

Takeaway 2.11.3.1 The two expressions A[i] and *(A+i) are equivalent.

If it is a pointer, we understand the second expression. Here, it just says that we may
write the same expression as A[i]. Applying this notion of array access to pointers should
improve the readability of your code. The equivalence does not mean that all of the sudden
an array object appears where there was none. If A is null, A[i] should crash nicely, as
should *(A+i).

If A is an array, *(A+i) shows our first application of one of the most important rules
in C, called array-to-pointer decayC :

Takeaway 2.11.3.2 (array decay) Evaluation of an array A returns &A[0].

In fact, this is the reason there are no “array values” and all the difficulties they entail
(takeaway 1.6.1.3). Whenever an array occurs that requires a value, it decays to a pointer,
and we lose all additional information.

11.3.2. Array and pointer parameters are the same. Because of the decay, arrays can-
not be function arguments. There would be no way to call such a function with an array
parameter; before any call to the function, an array that we feed into it would decay into a
pointer, and thus the argument type wouldn’t match.

But we have seen declarations of functions with array parameters, so how did they
work? The trick C gets away with is to rewrite array parameters to pointers.

Takeaway 2.11.3.3 In a function declaration, any array parameter rewrites to a pointer.

Think of this and what it means for a while. Understanding this “chief feature” (or
character flaw) is central for coding easily in C.

To come back to our examples from subsection 6.1.5, the functions that were written
with array parameters could be declared as follows:

size_t strlen(char const* s);
char* strcpy(char* target , char const* source);
signed strcmp(char const* s0, char const* s1);

These are completely equivalent, and any C compiler should be able to use both forms
interchangeably.

Which one to use is a question of habit, culture, or other social contexts. The rule
that we follow in this book to use array notation if we suppose it can’t be null, and pointer
notation if it corresponds to a single item of the base type that also can be null to indicate
a special condition.

If semantically a parameter is an array, we also note what size we expect the array to
be, if possible. And to make it possible, it is usually better to specify the length before the
arrays/pointers. An interface such as

double double_copy(size_t len ,
double target[len],
double const source[len]);

tells a whole story. This becomes even more interesting if we handle two-dimensional
arrays. A typical matrix multiplication could look as follows:

11. POINTERS 145

void matrix_mult(size_t n, size_t k, size_t m,
double C[n][m],
double A[n][k],
double B[k][m]) {

for (size_t i = 0; i < n; ++i) {
for (size_t j = 0; j < m; ++j) {

C[i][j] = 0.0;
for (size_t l = 0; l < k; ++l) {

C[i][j] += A[i][l]*B[l][j];
}

}
}

}

The prototype is equivalent to the less readable

void matrix_mult(size_t n, size_t k, size_t m,
double (C[n])[m],
double (A[n])[k],
double (B[k])[m]);

and

void matrix_mult(size_t n, size_t k, size_t m,
double (*C)[m],
double (*A)[k],
double (*B)[m]);

Observe that once we have rewritten the innermost dimension as a pointer, the parameter
type is not an array anymore, but a pointer to array. So there is no need to rewrite the
subsequent dimensions.

Takeaway 2.11.3.4 Only the innermost dimension of an array parameter is rewritten.

Finally, we have gained a lot by using array notation. We have without any trou-
ble problems passed pointers to VLAs into the function. Inside the function, we can use
conventional indexing to access the elements of the matrices. Not much in the way of
acrobatics is required to keep track of the array lengths:

Takeaway 2.11.3.5 Declare length parameters before array parameters.

They simply have to be known at the point where you use them first.
Unfortunately, C generally gives no guarantee that a function with array-length pa-

rameters is always called correctly.

Takeaway 2.11.3.6 The validity of array arguments to functions must be guaranteed by
the programmer.

If the array lengths are known at compile time, compilers may be able to issue warn-
ings, though. But when array lengths are dynamic, you are mostly on your own: be careful.

11.4. Function pointers. There is yet another construct for which the address-of op-
erator & can be used: functions. We saw this concept pop up when discussing the atexit
function (section 8.7), which is a function that receives a function argument. The rule is
similar to that for array decay, which we described earlier:

Takeaway 2.11.4.1 (function decay) A function f without a following opening (decays
to a pointer to its start.

146 2. COGNITION

Syntactically, functions and function pointers are also similar to arrays in type decla-
rations and as function parameters:

typedef void atexit_function(void);
// Two equivalent definitions of the same type , which hides a pointer
typedef atexit_function* atexit_function_pointer;
typedef void (* atexit_function_pointer)(void);
// Five equivalent declarations for the same function
void atexit(void f(void));
void atexit(void (*f)(void));
void atexit(atexit_function f);
void atexit(atexit_function* f);
void atexit(atexit_function_pointer f);

Which of the semantically equivalent ways of writing the function declaration is more
readable could certainly be the subject of much debate. The second version, with the (*f)
parentheses, quickly gets difficult to read; and the fifth is frowned upon because it hides a
pointer in a type. Among the others, I personally slightly prefer the fourth over the first.

The C library has several functions that receive function parameters. We have seen
atexit and at_quick_exit. Another pair of functions in stdlib.h provides generic<stdlib.h>

interfaces for searching (bsearch) and sorting (qsort):

typedef int compare_function(void const*, void const*);

void* bsearch(void const* key , void const* base ,
size_t n, size_t size ,
compare_function* compar);

void qsort(void* base ,
size_t n, size_t size ,
compare_function* compar);

Both receive an array base as argument on which they perform their task. The address
to the first element is passed as a void pointer, so all type information is lost. To be able
to handle the array properly, the functions have to know the size of the individual elements
(size) and the number of elements (n).

In addition, they receive a comparison function as a parameter that provides the in-
formation about the sort order between the elements. By using such a function pointer,
the bsearch and qsort functions are very generic and can be used with any data model
that allows for an ordering of values. The elements referred by the base parameter can be
of any type T (int, double, string, or application defined) as long as the size parameter
correctly describes the size of T and as long as the function pointed to by compar knows
how to compare values of type T consistently.

A simple version of such a function would look like this:

int compare_unsigned(void const* a, void const* b){
unsigned const* A = a;
unsigned const* B = b;
if (*A < *B) return -1;
else if (*A > *B) return +1;
else return 0;

}

The convention is that the two arguments point to elements that are to be compared,
and the return value is strictly negative if a is considered less than b, 0 if they are equal,
and strictly positive otherwise.

The return type of int seems to suggest that int comparison could be done more
simply:

11. POINTERS 147

/* An invalid example for integer comparison */
int compare_int(void const* a, void const* b){

int const* A = a;
int const* B = b;
return *A - *B; // may overflow!

}

But this is not correct. For example, if *A is big, say INT_MAX, and *B is negative, the
mathematical value of the difference can be larger than INT_MAX.

Because of the void pointers, a usage of this mechanism should always take care that
the type conversions are encapsulated similar to the following:

/* A header that provides searching and sorting for unsigned. */

/* No use of inline here; we always use the function pointer. */
extern int compare_unsigned(void const*, void const*);

inline
unsigned const* bsearch_unsigned(unsigned const key[static 1],

size_t nmeb , unsigned const base[nmeb]) {
return bsearch(key , base , nmeb , sizeof base[0], compare_unsigned);

}

inline
void qsort_unsigned(size_t nmeb , unsigned base[nmeb]) {

qsort(base , nmeb , sizeof base[0], compare_unsigned);
}

Here, bsearch (binary search) searches for an element that compares equal to key[0] and
returns it, or returns a null pointer if no such element is found. It supposes that array base
is already sorted consistently to the ordering that is given by the comparison function. This
assumption helps to speed up the search. Although this is not explicitly specified in the C
standard, you can expect that a call to bsearch will never make more than dlog2(n)e calls
to compar.

If bsearch finds an array element that is equal to *key, it returns the pointer to this
element. Note that this drills a hole in C’s type system, since this returns an unqualified
pointer to an element whose effective type might be const qualified. Use with care. In our
example, we simply convert the return value to unsigned const*, such that we will never
even see an unqualified pointer at the call side of bsearch_unsigned.

The name qsort is derived from the quick sort algorithm. The standard doesn’t impose
the choice of the sorting algorithm, but the expected number of comparison calls should
be of the magnitude of n log2(n), just like quick sort. There are no guarantees for upper
bounds; you may assume that its worst-case complexity is at most quadratic, O(n2).

Whereas there is a catch-all pointer type, void*, that can be used as a generic pointer
to object types, no such generic type or implicit conversion exists for function pointers.

Takeaway 2.11.4.2 Function pointers must be used with their exact type.

Such a strict rule is necessary because the calling conventions for functions with dif-
ferent prototypes may be quite different17 and the pointer itself does not keep track of any
of this.

The following function has a subtle problem because the types of the parameters are
different than what we expect from a comparison function:

17The platform application binary interface (ABI) may, for example, pass floating points in special hardware
registers.

148 2. COGNITION

/* Another invalid example for an int comparison function */
int compare_int(int const* a, int const* b){

if (*a < *b) return -1;
else if (*a > *b) return +1;
else return 0;

}

When you try to use this function with qsort, your compiler should complain that
the function has the wrong type. The variant that we gave earlier using intermediate
void const* parameters should be almost as efficient as this invalid example, but it also
can be guaranteed to be correct on all C platforms.

Calling functions and function pointers with the (...) operator has rules similar to
those for arrays and pointers and the [...] operator:

Takeaway 2.11.4.3 The function call operator (...) applies to function pointers.

double f(double a);

// Equivalent calls to f, steps in the abstract state machine
f(3); // Decay → call
(&f)(3); // Address of → call
(*f)(3); // Decay → dereference → decay → call
(*&f)(3); // Address of → dereference → decay → call
(&*f)(3); // Decay → dereference → address of → call

So technically, in terms of the abstract state machine, the pointer decay is always
performed, and the function is called via a function pointer. The first, “natural” call has a
hidden evaluation of the f identifier that results in the function pointer.

Given all this, we can use function pointers almost like functions:

// In a header
typedef int logger_function(char const*, ...);
extern logger_function* logger;
enum logs { log_pri , log_ign , log_ver , log_num };

This declares a global variable logger that will point to a function that prints out log-
ging information. Using a function pointer will allow the user of this module to choose a
particular function dynamically:

// In a .c file (TU)
extern int logger_verbose(char const*, ...);
static
int logger_ignore(char const*, ...) {

return 0;
}
logger_function* logger = logger_ignore;

static
logger_function* loggers = {

[log_pri] = printf ,
[log_ign] = logger_ignore ,
[log_ver] = logger_verbose ,

};

Here, we are defining tools that implement this approach. In particular, function pointers
can be used as a base type for arrays (here loggers). Observe that we use two external
functions (printf and logger_verbose) and one static function (logger_ignore) for
the array initialization: the storage class is not part of the function interface.

SUMMARY 149

The logger variable can be assigned just like any other pointer type. Somewhere at
startup we can have

if (LOGGER < log_num) logger = loggers[LOGGER];

Then this function pointer can be used anywhere to call the corresponding function:

logger("Do␣we␣ever␣see␣line␣\%lu␣of␣file␣\%s?", __LINE__ +0UL, __FILE__);

This call uses the special macros __LINE__ and __FILE__ for the line number and the
name of the source file. We will discuss these in more detail in subsection 16.3.

When using pointers to functions, you should always be aware that doing so introduces
an indirection to the function call. The compiler first has to fetch the contents of logger
and can only then call the function at the address it found there. This has a certain overhead
and should be avoided in time-critical code.

CHALLENGE 13 (Generic derivative). Can you extend the real and complex derivatives
(challenges 2 and 5) such that they receive the function F and the value x as a parameter?
Can you use the generic real derivatives to implement Newton’s method for finding roots?
Can you find the real zeros of polynomials?
Can you find the complex zeros of polynomials?

CHALLENGE 14 (Generic sorting). Can you extend your sorting algorithms (challenge 1)
to other sort keys?
Can you condense your functions for different sort keys to functions that have the same
signature as qsort: that is, receive generic pointers to data, size information, and a com-
parison function as parameters?
Can you extend the performance comparison of your sorting algorithms (challenge 10) to
the C library function qsort?

Summary

• Pointers can refer to objects and to functions.
• Pointers are not arrays but refer to arrays.
• Array parameters of functions are automatically rewritten as object pointers.
• Function parameters of functions are automatically rewritten as function point-

ers.
• Function pointer types must match exactly when they are assigned or called.

150 2. COGNITION

12. The C memory model

This section covers
• Understanding object representations
• Working with untyped pointers and casts
• Restricting object access with effective types and alignment

Pointers present us with a certain abstraction of the environment and state in which
our program is executed, the C memory model. We may apply the unary operator & to
(almost) all objects18 to retrieve their address and use it to inspect and change the state of
our execution.

This access to objects via pointers is still an abstraction, because seen from C, no
distinction of the “real” location of an object is made. It could reside in your computer’s
RAM or on a disk file, or correspond to an IO port of a temperature sensor on the moon;
you shouldn’t care. C is supposed to do the right thing, regardless.

And indeed, on modern operating systems, all you get via pointers is something called
virtual memory, basically a fiction that maps the address space of your process to physical
memory addresses of your machine. All this was invented to ensure certain properties of
your program executions:
portable: You do not have to care about physical memory addresses on a specific machine.
safe: Reading or writing virtual memory that your process does not own will affect neither

your operating system nor any other process.
The only thing C must care about is the type of the object a pointer addresses. Each pointer
type is derived from another type, its base type, and each such derived type is a distinct
new type.

Takeaway 2.12.0.1 Pointer types with distinct base types are distinct.

In addition to providing a virtual view of physical memory, the memory model also
simplifies the view of objects themselves. It makes the assumption that each object is
a collection of bytes, the object representation (subsection 12.1);19 see figure 12.1 for a
schematic view. A convenient tool to inspect that object representation is unions (subsec-
tion 12.2). Giving direct access to the object representation (subsection 12.3) allows us to
do some fine tuning; but on the other hand, it also opens the door to unwanted or conscious
manipulations of the state of the abstract machine: tools for that are untyped pointers (sub-
section 12.4) and casts (subsection 12.5). Effective types (subsection 12.6) and alignment
(subsection 12.7) describe formal limits and platform constraints for such manipulations.

12.1. A uniform memory model. Even though generally all objects are typed, the
memory model makes another simplification: that all objects are an assemblage of bytesC .
The sizeof operator that we introduced in the context of arrays measures the size of an
object in terms of the bytes that it uses. There are three distinct types that by definition use
exactly one byte of memory: the character types char, unsigned char, and signed char.

Takeaway 2.12.1.1 sizeof(char) is 1 by definition.

Not only can all objects be “accounted” in size as character types on a lower level,
they can even be inspected and manipulated as if they were arrays of such character types.
A little later, we will see how this can be achieved, but for the moment we will just note
the following:

18Only objects that are declared with keyword register don’t have an address; see subsection 13.2.2 on
level 2

19The object representation is related to but not the same thing as the binary representation that we saw in
subsection 5.1.3.

12. THE C MEMORY MODEL 151

Semantic type int32_t −b31231 +
30∑
i=0

bi2
i

↑
typedef

↓

Basic type signed int −b31231 +
30∑
i=0

bi2
i

↑
sign representation

↓

Binary representation
[3]

b31 · · · b24

[2]

b23 · · · b16

[1]

b15 · · · b8

[0]

b7 · · · b0

↑
endianness
↓

Object representation
[0]

unsigned char

[1]

unsigned char

[2]

unsigned char

[3]

unsigned char

unsigned char[4] l l l l

Storage instance
+0

byte

+1

byte

+2

byte

+3

byte

void* l l l l

OS/physical memory
+0

byte

+1

byte

+2

byte

+3

byte

FIGURE 12.1. The different levels of the value-memory model for
an int32_t. Example of a platform that maps this type to a 32-bit
signed int that has two’s complement sign representation and little-
endian object representation.

Takeaway 2.12.1.2 Every object A can be viewed as unsigned char[sizeof A].

Takeaway 2.12.1.3 Pointers to character types are special.

Unfortunately, the types that are used to compose all other object types are derived
from char, the type we looked at for the characters of strings. This is merely a histor-
ical accident, and you shouldn’t read too much into it. In particular, you should clearly
distinguish the two different use cases.

Takeaway 2.12.1.4 Use the type char for character and string data.

Takeaway 2.12.1.5 Use the type unsigned char as the atom of all object types.

The type signed char is of much less importance than the two others.
As we have seen, the sizeof operator counts the size of an object in terms of how

many unsigned char s it occupies.

Takeaway 2.12.1.6 The sizeof operator can be applied to objects and object types.

In the previous discussion, we can also distinguish two syntactic variants for sizeof: with
and without parentheses. Whereas the syntax for an application to objects can have both
forms, the syntax for types needs parentheses:

Takeaway 2.12.1.7 The size of all objects of type T is given by sizeof(T).

152 2. COGNITION

12.2. Unions. Let us now look at a way to examine the individual bytes of objects.
Our preferred tool for this is the union. These are similar in declaration to struct but
have different semantics:

. endianness.c

2 #include <inttypes.h>
3
4 typedef union unsignedInspect unsignedInspect;
5 union unsignedInspect {
6 unsigned val;
7 unsigned char bytes[sizeof(unsigned)];
8 };
9 unsignedInspect twofold = { .val = 0xAABBCCDD , };

The difference here is that such a union doesn’t collect objects of different type into
one bigger object, but rather overlays an object with a different type interpretation. That
way, it is the perfect tool to inspect the individual bytes of an object of another type.

Let us first try to figure out what values we would expect for the individual bytes. In
a slight abuse of language, let us speak of the different parts of an unsigned number that
correspond to the bytes as representation digits. Since we view the bytes as being of type
unsigned char, they can have values 0 . . .UCHAR_MAX, inclusive, and thus we interpret the
number as written with a base of UCHAR_MAX+1. In the example, on my machine, a value
of type unsigned can be expressed with sizeof(unsigned) == 4 such representation
digits, and I chose the values 0xAA, 0xBB, 0xCC, and 0xDD for the highest- to lowest-order
representation digit. The complete unsigned value can be computed using the following
expression, where CHAR_BIT is the number of bits in a character type:

1 ((0xAA << (CHAR_BIT *3))
2 |(0xBB << (CHAR_BIT *2))
3 |(0xCC << CHAR_BIT)
4 |0xDD)

With the union defined earlier, we have two different facets to look at the same
twofold object: twofold.val presents it as being an unsigned, and twofold.bytes
presents it as an array of unsigned char. Since we chose the length of twofold.bytes to
be exactly the size of twofold.val, it represents exactly its bytes, and thus gives us a way
to inspect the object representationC of an unsigned value: all its representation digits:

. endianness.c

12 printf("value␣is␣0x%.08X\n", twofold.val);
13 for (size_t i = 0; i < sizeof twofold.bytes; ++i)
14 printf("byte[%zu]:␣0x%.02 hhX\n", i, twofold.bytes[i]);

On my computer, I receive a result as shown here:20

Terminal

0 ~/build/modernC% code/endianness

1 value is 0xAABBCCDD

2 byte[0]: 0xDD

3 byte[1]: 0xCC

4 byte[2]: 0xBB

5 byte[3]: 0xAA

20Test the code on your own machine.

12. THE C MEMORY MODEL 153

For my machine, we see that the output has the low-order representation digits of the
integer first, then the next-lower order digits, and so on. At the end, the highest-order digits
are printed. So the in-memory representation of such an integer on my machine has the
low-order representation digits before the high-order ones.

This is not normalized by the standard, but is an implementation-defined behavior.

Takeaway 2.12.2.1 The in-memory order of the representation digits of an arithmetic
type is implementation defined.

That is, a platform provider might decide to provide a storage order that has the
highest-order digits first, and then print lower-order digits one by one. The storage or-
der, the endiannessC , as given for my machine, is called little-endianC . A system that has
high-order representation digits first is called big-endianC .21 Both orders are commonly
used by modern processor types. Some processors are even able to switch between the two
orders on the fly.

The previous output also shows another implementation-defined behavior: I used the
feature of my platform that one representation digit can be printed nicely by using two
hexadecimal digits. In other words, I assumed that UCHAR_MAX+1 is 256 and that the num-
ber of value bits in an unsigned char, CHAR_BIT, is 8. Again, this is implementation-
defined behavior: although the vast majority of platforms have these properties,22 there are
still some around that have wider character types.

Takeaway 2.12.2.2 On most architectures, CHAR_BIT is 8 and UCHAR_MAX is 255.

In the example, we have investigated the in-memory representation of the simplest
arithmetic base types, unsigned integers. Other base types have in-memory representations
that are more complicated: signed integer types have to encode the sign; floating-point
types have to encode the sign, mantissa, and exponent; and pointer types may follow any
internal convention that fits the underlying architecture.[Exs 23][Exs 24][Exs 25]

12.3. Memory and state. The value of all objects constitutes the state of the abstract
state machine, and thus the state of a particular execution. C’s memory model provides
something like a unique location for (almost) all objects through the & operator, and that
location can be accessed and modified from different parts of the program through pointers.

Doing so makes the determination of the abstract state of an execution much more
difficult, if not impossible in many cases:

1 double blub(double const* a, double* b);
2
3 int main(void) {
4 double c = 35;
5 double d = 3.5;
6 printf("blub␣is␣%g\n", blub(&c, &d));
7 printf("after␣blub␣the␣sum␣is␣%g\n", c + d);
8 }

Here, we (as well as the compiler) only see a declaration of function blub, with no
definition. So we cannot conclude much about what that function does to the objects its
arguments point to. In particular, we don’t know if the variable d is modified, so the sum

21The names are derived from the fact that the big or small “end” of a number is stored first.
22In particular, all POSIX systems.

[Exs 23]Design a similar union type to investigate the bytes of a pointer type, such as double*.
[Exs 24]With such a union, investigate the addresses of two consecutive elements of an array.
[Exs 25]Compare the addresses of the same variable between different executions.

154 2. COGNITION

c + d could be anything. The program really has to inspect the object d in memory to find
out what the values after the call to blub are.

Now let us look at such a function that receives two pointer arguments:

1 double blub(double const* a, double* b) {
2 double myA = *a;
3 *b = 2*myA;
4 return *a; // May be myA or 2*myA
5 }

Such a function can operate under two different assumptions. First, if called with two
distinct addresses as arguments, *a will be unchanged, and the return value will be the
same as myA. But if both argument are the same, such as if the call is blub(&c, &c), the
assignment to *b will change *a, too.

The phenomenon of accessing the same object through different pointers is called
aliasingC ; it is a common cause for missed optimization. In both cases, either that two
pointers always alias or that they never alias, the abstract state of an execution is much
reduced, and the optimizer often can take much advantage of that knowledge. Therefore,
C forcibly restricts the possible aliasing to pointers of the same type.

Takeaway 2.12.3.1 (Aliasing) With the exclusion of character types, only pointers of the
same base type may alias.

To see this rule in effect, consider a slight modification of our previous example:

1 size_t blob(size_t const* a, double* b) {
2 size_t myA = *a;
3 *b = 2*myA;
4 return *a; // Must be myA
5 }

Because here the two parameters have different types, C assumes that they don’t ad-
dress the same object. In fact, it would be an error to call that function as blob(&e, &e),
since this would never match the prototype of blob. So at the return statement, we can be
sure that the object *a hasn’t changed and that we already hold the needed value in variable
myA.

There are ways to fool the compiler and to call such a function with a pointer that
addresses the same object. We will see some of these cheats later. Don’t do this: it is
a road to much grief and despair. If you do so, the behavior of the program becomes
undefined, so you have to guarantee (prove!) that no aliasing takes place.

In the contrary, we should try to write our programs so they protect our variables from
ever being aliased, and there is an easy way to achieve that.

Takeaway 2.12.3.2 Avoid the & operator.

Depending on the properties of a given variable, the compiler may see that the address
of the variable is never taken, and thus the variable can’t alias at all. In subsection 13.2,
we will see which properties of a variable or object may influence such decisions and
how the register keyword can protect us from taking addresses inadvertently. Later,
in subsection 15.2, we will see how the restrict keyword allows us to specify aliasing
properties of pointer arguments, even if they have the same base type.

12.4. Pointers to unspecific objects. As we have seen, the object representation pro-
vides a view of an object X as an array unsigned char[sizeof X]. The starting address
of that array (of type unsigned char*) provides access to memory that is stripped of the
original type information.

12. THE C MEMORY MODEL 155

C has invented a powerful tool to handle such pointers more generically. These are
pointers to a sort of non-type, void.

Takeaway 2.12.4.1 Any object pointer converts to and from void*.

Note that this only talks about object pointers, not function pointers. Think of a void*
pointer that holds the address of an existing object as a pointer into a storage instance
that holds the object; see figure 12.1. As an analogy for such a hierarchy, you could think
of entries in a phone book: a person’s name corresponds to the identifier that refers to an
object; their categorization with a “mobile,” “home,” or “work” entry corresponds to a type;
and their phone number itself is some sort of address (in which, by itself, you typically
are not interested). But then, even the phone number abstracts away from the specific
information of where the other phone is located (which would be the storage instance
underneath the object), or of specific information about the other phone itself, for example
if it is on a landline or the mobile network, and what the network has to do to actually
connect you to the person at the other end.

Takeaway 2.12.4.2 An object has storage, type, and value.

Not only is the conversion to void* well defined, but it also is guaranteed to behave
well with respect to the pointer value.

Takeaway 2.12.4.3 Converting an object pointer to void* and then back to the same
type is the identity operation.

So the only thing that we lose when converting to void* is the type information; the
value remains intact.

Takeaway 2.12.4.4 (avoid2*) Avoid void*.

It completely removes any type information that was associated with an address. Avoid
it whenever you can. The other way around is much less critical, in particular if you have
a C library call that returns a void*.

void as a type by itself shouldn’t be used for variable declarations since it won’t lead
to an object with which we could do anything.

12.5. Explicit conversions. A convenient way to look at the object representation of
object X would be to somehow convert a pointer to X to a pointer of type unsigned char*:

double X;
unsigned char* Xp = &X; // error: implicit conversion not allowed

Fortunately, such an implicit conversion of a double* to unsigned char* is not allowed.
We would have to make this conversion somehow explicit.

We already have seen that in many places, a value of a certain type is implicitly con-
verted to a value of a different type (subsection 5.4), and that narrow integer types are first
converted to int before any operation. In view of that, narrow types only make sense in
very special circumstances:

• You have to save memory. You need to use a really big array of small values.
Really big here means potentially millions or billions. In such a situation, storing
these values may gain you something.

• You use char for characters and strings. But then you wouldn’t do arithmetic
with them.

• You use unsigned char to inspect the bytes of an object. But then, again, you
wouldn’t do arithmetic with them.

156 2. COGNITION

Conversions of pointer types are more delicate, because the can change the type in-
terpretation of an object. Only two forms of implicit conversions are permitted for data
pointers: conversions from and to void*, and conversions that add a qualifier to the target
type. Let’s look at some examples:

1 float f = 37.0; // Conversion: to float
2 double a = f; // Conversion: back to double
3 float* pf = &f; // Exact type
4 float const* pdc = &f; // Conversion: adding a qualifier
5 void* pv = &f; // Conversion: pointer to void*
6 float* pfv = pv; // Conversion: pointer from void*
7 float* pd = &a; // Error: incompatible pointer type
8 double* pdv = pv; // Undefined behavior if used

The first two conversions that use void* (pv and pfv) are already a bit tricky: we convert
a pointer back and forth, but we watch that the target type of pfv is the same as f so
everything works out fine.

Then comes the erroneous part. In the initialization of pd, the compiler can protect us
from a severe fault: assigning a pointer to a type that has a different size and interpretation
can and will lead to serious damage. Any conforming compiler must give a diagnosis
for this line. As you have by now understood well that your code should not produce
compiler warnings (takeaway 0.1.2.3), you know that you should not continue until you
have repaired such an error.

The last line is worse: it has an error, but that error is syntactically correct. The reason
this error might go undetected is that our first conversion for pv has stripped the pointer
from all type information. So, in general, the compiler can’t know what type of object is
behind the pointer.

In addition to the implicit conversions that we have seen until now, C also allows us to
convert explicitly using castsC .26 With a cast, you are telling the compiler that you know
better than it does, that the type of the object behind the pointer is not what it thinks, and
that it should shut up. In most use cases that I have come across in real life, the compiler
was right and the programmer was wrong: even experienced programmers tend to abuse
casts to hide poor design decisions concerning types.

Takeaway 2.12.5.1 Don’t use casts.

They deprive you of precious information, and if you chose your types carefully, you will
only need them for very special occasions.

One such occasion is when you want to inspect the contents of an object on the byte
level. Constructing a union around an object, as we saw in subsection 12.2, might not
always be possible (or or may be too complicated), so here we can go for a cast:

. endianness.c

15 unsigned val = 0xAABBCCDD;
16 unsigned char* valp = (unsigned char*)&val;
17 for (size_t i = 0; i < sizeof val; ++i)
18 printf("byte[%zu]:␣0x%.02 hhX\n", i, valp[i]);

In that direction (from “pointer to object” to a “pointer to character type”), a cast is
mostly harmless.

12.6. Effective types. To cope with different views of the same object that pointers
may provide, C has introduced the concept of effective types. It heavily restricts how an
object can be accessed.

26A cast of an expression X to type T has the form (T)X. Think of it like “to cast a spell.”

12. THE C MEMORY MODEL 157

Takeaway 2.12.6.1 (Effective Type) Objects must be accessed through their effective
type
or through a pointer to a character type.

Because the effective type of a union variable is the union type and none of the
member types, the rules for union members can be relaxed:

Takeaway 2.12.6.2 Any member of an object that has an effective union type can be
accessed at any time, provided the byte representation amounts to a valid
value of the access type.

For all objects we have seen so far, it is easy to determine the effective type:

Takeaway 2.12.6.3 The effective type of a variable or compound literal is the type of its
declaration.

Later, we will see another category of objects that are a bit more involved.
Note that this rule has no exceptions, and that we can’t change the type of such a

variable or compound literal.

Takeaway 2.12.6.4 Variables and compound literals must be accessed through their de-
clared type or through a pointer to a character type.

Also observe the asymmetry in all of this for character types. Any object can be seen
as being composed of unsigned char, but no array of unsigned char s can be used
through another type:

unsigned char A[sizeof(unsigned)] = { 9 };
// Valid but useless , as most casts are
unsigned* p = (unsigned *)A;
// Error: access with a type that is neither the effective type nor a
// character type
printf("value␣\%u\n", *p);

Here, the access *p is an error, and the program state is undefined afterward. This is in
strong contrast to our dealings with union earlier: see subsection 12.2, where we actually
could view a byte sequences as array of unsigned char or unsigned.

The reasons for such a strict rule are multiple. The very first motivation for introducing
effective types in the C standard was to deal with aliasing, as we saw in subsection 12.3.
In fact, the Aliasing Rule (takeaway 2.12.3.1) is derived from the Effective Type Rule
(takeaway 2.12.6.1). As long as there is no union involved, the compiler knows that we
cannot access a double through a size_t*, and so it may assume that the objects are
different.

12.7. Alignment. The inverse direction of pointer conversions (from “pointer to char-
acter type” to “pointer to object”) is not harmless at all, and not only because of possible
aliasing. This has to do with another property of C’s memory model: alignmentC . Objects
of most non-character types can’t start at any arbitrary byte position; they usually start at
a word boundaryC . The alignment of a type then describes the possible byte positions at
which an object of that type can start.

If we force some data to a false alignment, really bad things can happen. To see that,
have a look at the following code:

1 #include <stdio.h>
2 #include <inttypes.h>
3 #include <complex.h>

158 2. COGNITION

4 #include "crash.h"
5
6 void enable_alignment_check(void);
7 typedef complex double cdbl;
8
9 int main(void) {

10 enable_alignment_check ();
11 /* An overlay of complex values and bytes. */
12 union {
13 cdbl val [2];
14 unsigned char buf[sizeof(cdbl [2])];
15 } toocomplex = {
16 .val = { 0.5 + 0.5*I, 0.75 + 0.75*I, },
17 };
18 printf("size/alignment:␣%zu/%zu\n",
19 sizeof(cdbl), _Alignof(cdbl));
20 /* Run over all offsets , and crash on misalignment. */
21 for (size_t offset = sizeof(cdbl); offset; offset /=2) {
22 printf("offset\t%zu:\t", offset);
23 fflush(stdout);
24 cdbl* bp = (cdbl*)(& toocomplex.buf[offset]); // align!
25 printf("%g\t+%gI\t", creal (*bp), cimag (*bp));
26 fflush(stdout);
27 *bp *= *bp;
28 printf("%g\t+%gI", creal (*bp), cimag (*bp));
29 fputc('\n', stdout);
30 }
31 }

This starts with a declaration of a union similar to what we saw earlier. Again, we
have a data object (of type complex double[2] in this case) that we overlay with an array
of unsigned char. Other than the fact that this part is a bit more complex, at first glance
there is no major problem with it. But if I execute this program on my machine, I get

Terminal

0 ~/.../modernC/code (master % u=) 14:45 <516>$./crash

1 size/alignment: 16/8

2 offset 16: 0.75 +0.75I 0 +1.125I

3 offset 8: 0.5 +0I 0.25 +0I

4 offset 4: Bus error

The program crashes with an error indicated as a bus errorC , which is a shortcut for
something like “data bus alignment error.” The real problem line is

. crash.c

24 cdbl* bp = (cdbl*)(& toocomplex.buf[offset]); // align!

On the right, we see a pointer cast: an unsigned char* is converted to a complex
double*. With the for loop around it, this cast is performed for byte offsets offset from
the beginning of toocomplex. These are powers of 2: 16, 8, 4, 2, and 1. As you can see in
the output, above, it seems that complex double still works well for alignments of half of
its size, but then with an alignment of one fourth, the program crashes.

Some architectures are more tolerant of misalignment than others, and we might have
to force the system to error out on such a condition. We use the following function at the
beginning to force crashing:

SUMMARY 159

crash.c

enable_alignment_check: enable alignment check for i386 processors

Intel’s i386 processor family is quite tolerant in accepting misalignment of data. This
can lead to irritating bugs when ported to other architectures that are not as tolerant.

This function enables a check for this problem also for this family or processors, such
that you can be sure to detect this problem early.

I found that code on Ygdrasil’s blog: http://orchistro.tistory.com/206

void enable_alignment_check(void);

If you are interested in portable code (and if you are still here, you probably are), early
errors in the development phase are really helpful.27 So, consider crashing a feature. See
the blog entry mentioned in crash.h for an interesting discussion on this topic.

In the previous code example, we also see a new operator, alignof (or _Alignof, if
you don’t include stdalign.h), that provides us with the alignment of a specific type. You <stdalign.h>

will rarely find the occasion to use it in real live code.
Another keyword can be used to force allocation at a specified alignment: alignas

(respectively, _Alignas). Its argument can be either a type or expression. It can be useful
where you know that your platform can perform certain operations more efficiently if the
data is aligned in a certain way.

For example, to force alignment of a complex variable to its size and not half the size,
as we saw earlier, you could use

alignas(sizeof(complex double)) complex double z;

Or if you know that your platform has efficient vector instructions for float[4] arrays:

alignas(sizeof(float [4])) float fvec [4];

These operators don’t help against the Effective Type Rule (takeaway 2.12.6.1). Even
with

alignas(unsigned) unsigned char A[sizeof(unsigned)] = { 9 };

the example at the end of section 12.6 remains invalid.

Summary

• The memory and object model have several layers of abstraction: physical mem-
ory, virtual memory, storage instances, object representation, and binary repre-
sentation.

• Each object can be seen as an array of unsigned char.
• unions serve to overlay different object types over the same object representa-

tion.
• Memory can be aligned differently according to the need for a specific data type.

In particular, not all arrays of unsigned char can be used to represent any object
type.

27For the code that is used inside that function, please consult the source code of crash.h to inspect it.

http://orchistro.tistory.com/206

160 2. COGNITION

13. Storage

This section covers
• Creating objects with dynamic allocation
• The rules of storage and initialization
• Understanding object lifetime
• Handling automatic storage

So far, most objects we have handled in our programs have been variables: that is,
objects that are declared in a regular declaration with a specific type and an identifier that
refers to the object. Sometimes they were defined at a different place in the code than
they were declared, but even such a definition referred to them with a type and identifier.
Another category of objects that we have seen less often is specified with a type but not
with an identifier: compound literals, as introduced in subsection 5.6.4.

All such objects, variables or compound literals, have a lifetimeC that depends on the
syntactical structure of the program. They have an object lifetime and identifier visibil-
ity that either spans the whole program execution (global variables, global literals, and
variables that are declared with static) or are bound to a block of statements inside a
function.28

We also have seen that for certain objects, it is important to distinguish different in-
stances: when we declare a variable in a recursive function. Each call in a hierarchy of
recursive calls has its own instance of such a variable. Therefore, it is convenient to distin-
guish another entity that is not exactly the same as an object, the storage instance.

In this section, we will handle another mechanism to create objects, called dynamic
allocation (subsection 13.1). In fact, this mechanism creates storage instances that are only
seen as byte arrays and do not have any interpretation as objects. They only acquire a type,
once we store something.

With this, we have an almost-complete picture of the different possibilities, and we can
thus discuss the different rules for storage duration, object lifetime, and identifier visibility
(subsection 13.2); we will also take a full dive into the rules for initialization (subsec-
tion 13.4), as these differ significantly for differently created objects.

Additionally, we propose two digressions. The first is a more-detailed view of object
lifetime, which allows us to access objects at surprising points in the C code (subsec-
tion 13.3). The second provides a glimpse into a realization of the memory model for a
concrete architecture (subsection 13.5) and in particular how automatic storage may be
handled on your particular machine.

13.1. malloc and friends. For programs that have to handle growing collections of
data, the types of objects that we have seen so far are too restrictive. To handle varying
user input, web queries, large interaction graphs and other irregular data, big matrices,
and audio streams, it is convenient to reclaim storage instances for objects on the fly and
then release them once they are not needed anymore. Such a scheme is called dynamic
allocationC , or sometimes just allocation for short.

The following set of functions, available with stdlib.h, has been designed to provide<stdlib.h>

such an interface to allocated storage:

#include <stdlib.h>
void* malloc(size_t size);
void free(void* ptr);
void* calloc(size_t nmemb , size_t size);
void* realloc(void* ptr , size_t size);
void* aligned_alloc(size_t alignment , size_t size);

28In fact, this is a bit of a simplification; we will see the gory details shortly.

13. STORAGE 161

The first two, malloc (memory allocate) and free, are by far the most prominent. As their
names indicate, malloc creates a storage instance for us on the fly, and free then anni-
hilates it. The three other functions are specialized versions of malloc: calloc (clear
allocate) sets all bits of the new storage to 0, realloc grows or shrinks storage, and
aligned_alloc ensures nondefault alignment.

All these functions operate with void*: that is, with pointers for which no type infor-
mation is known. Being able to specify such a “non-type” for this series of functions is
probably the raison d’être for the whole game with void* pointers. Using that, they be-
come universally applicable to all types. The following example allocates a large storage
for a vector of double s, one element for each living person:[Exs 29]

size_t length = livingPeople ();
double* largeVec = malloc(length * sizeof *largeVec);
for (size_t i = 0; i < length; ++i) {

largeVec[i] = 0.0;
}
...

free(largeVec);

Because malloc knows nothing about the later use or type of the to-be-stored object,
the size of the storage is specified in bytes. In the idiom given here, we have specified the
type information only once, as the pointer type for largeVec. By using sizeof *largeVec
in the parameter for the malloc call, we ensure that we will allocate the right number of
bytes. Even if we change largeVec later to have type size_t*, the allocation will adapt.

Another idiom that we will often encounter strictly takes the size of the type of the
object that we want to create: an array of length elements of type double:

double* largeVec = malloc(sizeof(double[length]));

We already have been haunted by the introduction of casts, which are explicit conver-
sions. It is important to note that the call to malloc stands as is; the conversion from void*,
the return type of malloc, to the target type is automatic and doesn’t need any intervention.

Takeaway 2.13.1.1 Don’t cast the return of malloc and friends.

Not only is such a cast superfluous, but doing an explicit conversion can even be
counterproductive when we forget to include the header file stdlib.h: Older C compilers <stdlib.h>

/* If we forget to include stdlib.h, many compilers
still assume: */

int malloc (); // Wrong function interface!
...
double* largeVec = (void*) malloc(sizeof(double[length]));

|
int <--
|

void* <--

then suppose a return of int and trigger the wrong conversion from int to a pointer type. I
have seen many crashes and subtle bugs triggered by that error, in particular in beginners’
code whose authors have been following bad advice.

In the previous code, as a next step, we initialize the storage that we just allocated
through assignment: here, all 0.0. It is only with these assignments that the individual

[Exs 29]Don’t try this allocation, but compute the size that would be needed on your platform. Is allocating such a
vector feasible on your platform?

162 2. COGNITION

elements of largeVec become “objects.” Such an assignment provides an effective type
and a value.

Takeaway 2.13.1.2 Storage that is allocated through malloc is uninitialized and has no
type.

13.1.1. A complete example with varying array size. Let us now look at an example
where using a dynamic array that is allocated with malloc brings us more flexibility than a
simple array variable. The following interface describes a circular buffer of double values
called circular:

circular.h

circular: an opaque type for a circular buffer for double values

This data structure allows to add double values in rear and to take them out in front.
Each such structure has a maximal amount of elements that can be stored in it.

typedef struct circular circular;

circular.h

circular_append: Append a new element with value value to the buffer c.

Returns: c if the new element could be appended, 0 otherwise.

circular* circular_append(circular* c, double value);

circular.h

circular_pop: Remove the oldest element from c and return its value.

Returns: the removed element if it exists, 0.0 otherwise.

double circular_pop(circular* c);

The idea is that, starting with 0 elements, new elements can be appended to the buffer
or dropped from the front, as long as the number of elements that are stored doesn’t exceed
a certain limit. The individual elements that are stored in the buffer can be accessed with
the following function:

circular.h

circular_element: Return a pointer to position pos in buffer c.

Returns: a pointer to the pos’ element of the buffer, 0 otherwise.

double* circular_element(circular* c, size_t pos);

Since our type circular will need to allocate and deallocate space for the circular
buffer, we will need to provide consistent functions for initialization and destruction of
instances of that type. This functionality is provided by two pairs of functions:

13. STORAGE 163

circular.h

circular_init: Initialize a circular buffer c with maximally max_len elements.

Only use this function on an uninitialized buffer.

Each buffer that is initialized with this function must be destroyed with a call to circu-
lar_destroy.

circular* circular_init(circular* c, size_t max_len);

circular.h

circular_destroy: Destroy circular buffer c.

c must have been initialized with a call to circular_init

void circular_destroy(circular* c);

circular.h

circular_new: Allocate and initialize a circular buffer with maximally len elements.

Each buffer that is allocated with this function must be deleted with a call to circu-
lar_delete.

circular* circular_new(size_t len);

circular.h

circular_delete: Delete circular buffer c.

c must have been allocated with a call to circular_new

void circular_delete(circular* c);

The first pair is to be applied to existing objects. They receive a pointer to such an
object and ensure that space for the buffer is allocated or freed. The first of the second
pair creates an object and initializes it; the last destroys that object and then deallocates the
memory space.

If we used regular array variables, the maximum number of elements that we could
store in a circular would be fixed once we created such an object. We want to be more
flexible so this limit can be raised or lowered by means of the circular_resize function
and the number of elements can be queried with circular_getlength:

circular.h

circular_resize: Resize to capacity max_len.

circular* circular_resize(circular* c, size_t max_len);

circular.h

circular_getlength: Return the number of elements stored.

size_t circular_getlength(circular* c);

Then, with the function circular_element, it behaves like an array of double s:
calling it with a position within the current length, we obtain the address of the element
that is stored in that position.

The hidden definition of the structure is as follows:

164 2. COGNITION

. circular.c

5 /** @brief the hidden implementation of the circular buffer type
*/

6 struct circular {
7 size_t start; /**< Position of element 0 */
8 size_t len; /**< Number of elements stored */
9 size_t max_len; /**< Maximum capacity */

10 double* tab; /**< Array holding the data */
11 };

The idea is that the pointer member tab will always point to an array object of length
max_len. At a certain point in time the buffered elements will start at start, and the
number of elements stored in the buffer is maintained in member len. The position inside
the table tab is computed modulo max_len.

The following table symbolizes one instance of this circular data structure, with
max_len=10, start=2, and len=4.

Table index 0 1 2 3 4 5 6 7 8 9
Buffer content /////garb /////garb 6.0 7.7 81.0 99.0 /////garb /////garb /////garb /////garb

Buffer position 0 1 2 3

We see that the buffer contents (the four numbers 6.0, 7.7, 81.0, and 99.0) are placed
consecutively in the array object pointed to by tab.

The following scheme represents a circular buffer with the same four numbers, but the
storage space for the elements wraps around.

Table index 0 1 2 3 4 5 6 7 8 9
Buffer content 81.0 99.0 /////garb /////garb /////garb /////garb /////garb /////garb 6.0 7.7

Buffer position 2 3 0 1

Initialization of such a data structure needs to call malloc to provide memory for the
tab member. Other than that it is

. circular.c

13 circular* circular_init(circular* c, size_t max_len) {
14 if (c) {
15 if (max_len) {
16 *c = (circular){
17 .max_len = max_len ,
18 .tab = malloc(sizeof(double[max_len])),
19 };
20 // Allocation failed.
21 if (!c->tab) c->max_len = 0;
22 } else {
23 *c = (circular){ 0 };
24 }
25 }
26 return c;
27 }

Observe that this function always checks the pointer parameter c for validity. Also,
it guarantees to initialize all other members to 0 by assigning compound literals in both
branches of the conditional.

13. STORAGE 165

The library function malloc can fail for different reasons. For example, the memory
system might be exhausted from previous calls to it, or the reclaimed size for allocation
might just be too large. In a general-purpose system like the one you are probably using
for your learning experience, such a failure will be rare (unless voluntarily provoked), but
it still is a good habit to check for it.

Takeaway 2.13.1.3 malloc indicates failure by returning a null pointer value.

Destruction of such an object is even simpler: we just have to check for the pointer,
and then we may free the tab member unconditionally.

. circular.c

29 void circular_destroy(circular* c) {
30 if (c) {
31 free(c->tab);
32 circular_init(c, 0);
33 }
34 }

The library function free has the friendly property that it accepts a null parameter and
does nothing in that case.

The implementation of some of the other functions uses an internal function to com-
pute the “circular” aspect of the buffer. It is declared static so it is only visible for those
functions and doesn’t pollute the identifier name space (takeaway 2.9.2.3).

. circular.c

50 static size_t circular_getpos(circular* c, size_t pos) {
51 pos += c->start;
52 pos %= c->max_len;
53 return pos;
54 }

Obtaining a pointer to an element of the buffer is now quite simple.

. circular.c

68 double* circular_element(circular* c, size_t pos) {
69 double* ret = 0;
70 if (c) {
71 if (pos < c->max_len) {
72 pos = circular_getpos(c, pos);
73 ret = &c->tab[pos];
74 }
75 }
76 return ret;
77 }

With all of that information, you should now be able to implement all but one of the
function interfaces nicely.[Exs 30] The one that is more difficult is circular_resize. It
starts with some length calculations and then treats the cases in which the request would
enlarge or shrink the table. Here we have the naming convention of using o (old) as the

[Exs 30]Write implementations of the missing functions.

166 2. COGNITION

first character of a variable name that refers to a feature before the change, and n (new) to
its value afterward. The end of the function then uses a compound literal to compose the
new structure by using the values found during the case analysis:

. circular.c

92 circular* circular_resize(circular* c, size_t nlen) {
93 if (c) {
94 size_t len = c->len;
95 if (len > nlen) return 0;
96 size_t olen = c->max_len;
97 if (nlen != olen) {
98 size_t ostart = circular_getpos(c, 0);
99 size_t nstart = ostart;

100 double* otab = c->tab;
101 double* ntab;
102 if (nlen > olen) {

. circular.c

138 }
139 *c = (circular){
140 .max_len = nlen ,
141 .start = nstart ,
142 .len = len ,
143 .tab = ntab ,
144 };
145 }
146 }
147 return c;
148 }

Let us now try to fill the gap in the previous code and look at the first case of enlarging
an object. The essential part of this is a call to realloc:

. circular.c

103 ntab = realloc(c->tab , sizeof(double[nlen]));
104 if (!ntab) return 0;

For this call, realloc receives the pointer to the existing object and the new size the
relocation should have. It returns either a pointer to the new object with the desired size or
null. In the line immediately after, we check the latter case and terminate the function if it
was not possible to relocate the object.

The function realloc has interesting properties:
• The returned pointer may or may not be the same as the argument. It is left to

the discretion of the runtime system to determine whether the resizing can be
performed in place (if there is space available behind the object, for example, or
if a new object must be provided. But, regardless of that, even if the returned
pointer is the same, the object is considered to be a new one (with the same
data). That means in particular that all pointers derived from the original become
invalid.

13. STORAGE 167

• If the argument pointer and the returned one are distinct (that is, the object has
been copied), nothing has to be done (or even should be) with the previous
pointer. The old object is taken care of.

• As far as possible, the existing content of the object is preserved:
– If the object is enlarged, the initial part of the object that corresponds to the

previous size is left intact.
– If the object shrank, the relocated object has a content that corresponds to

the initial part before the call.
• If 0 is returned (that is, the relocation request could not be fulfilled by the runtime

system), the old object is unchanged. So, nothing is lost.
Now that we know the newly received object has the size we want, we have to ensure

that tab still represents a circular buffer. If previously the situation was as in the first table,
earlier (the part that corresponds to the buffer elements is contiguous), we have nothing to
do. All data is nicely preserved.

If our circular buffer wrapped around, we have to make some adjustments:

. circular.c

105 // Two separate chunks
106 if (ostart+len > olen) {
107 size_t ulen = olen - ostart;
108 size_t llen = len - ulen;
109 if (llen <= (nlen - olen)) {
110 /* Copy the lower one up after the old end. */
111 memcpy(ntab + olen , ntab ,
112 llen*sizeof(double));
113 } else {
114 /* Move the upper one up to the new end. */
115 nstart = nlen - ulen;
116 memmove(ntab + nstart , ntab + ostart ,
117 ulen*sizeof(double));
118 }
119 }

The following table illustrates the difference in the contents between before and after
the changes for the first subcase: the lower part finds enough space inside the part that was
added:

Table index 0 1 2 3 4 5 6 7 8 9
Old content 81.0 99.0 /////garb /////garb /////garb /////garb /////garb /////garb 6.0 7.7

Old position 2 3 0 1
New position /2 /3 0 1 2 3
New content /////81.0 /////99.0 /////garb /////garb /////garb /////garb /////garb /////garb 6.0 7.7 81.0 99.0 /////garb
Table index 0 1 2 3 4 5 6 7 8 9 10 11 12

The other case, where the lower part doesn’t fit into the newly allocated part, is similar.
This time, the upper half of the buffer is shifted toward the end of the new table:

The handling of both cases shows a subtle difference, though. The first is handled
with memcpy; the source and target elements of the copy operation can’t overlap, so us-
ing memcpy here is safe. For the other case, as we see in the example, the source and
target elements may overlap, and thus the use of the less-restrictive memmove function is
required.[Exs 31]

[Exs 31]Implement shrinking of the table: it is important to reorganize the table contents before calling realloc.

168 2. COGNITION

Table index 0 1 2 3 4 5 6 7 8 9
Old content 81.0 99.0 /////garb /////garb /////garb /////garb /////garb /////garb 6.0 7.7

Old position 2 3 0 1
New position 2 3 0 1
New content 81.0 99.0 /////garb /////garb /////garb /////garb /////garb /////garb ////6.0 6.0 7.7
Table index 0 1 2 3 4 5 6 7 8 9 10

13.1.2. Ensuring consistency of dynamic allocations. As in both our code examples,
calls to allocation functions such as malloc, realloc, and free should always come in
pairs. This mustn’t necessarily be inside the same function, but in most case simple count-
ing of the occurrence of both should give the same number:

Takeaway 2.13.1.4 For every allocation, there must be a free.

If not, this could indicate a memory leakC : a loss of allocated objects. This could
lead to resource exhaustion of your platform, showing itself in low performance or random
crashes.

Takeaway 2.13.1.5 For every free, there must be a malloc, calloc, aligned_alloc,
or realloc.

But be aware that realloc can easily obfuscate simple counting of allocations: be-
cause if it is called with an existing object, it serves as deallocation (for the old object) and
allocation (for the new one) at the same time.

The memory-allocation system is meant to be simple, and thus free is only allowed
for pointers that have been allocated with malloc or that are null.

Takeaway 2.13.1.6 Only call free with pointers as they are returned by malloc, calloc,
aligned_alloc, or realloc.

They must not

• Point to an object that has been allocated by other means (that is, a variable or a
compound literal)

• Have been freed yet
• Only point to a smaller part of the allocated object.

Otherwise, your program will crash. Seriously, this will completely corrupt the memory
of your program execution, which is one of the worst types of crashes you can have. Be
careful.

13.2. Storage duration, lifetime, and visibility. We have seen in different places
that visibility of an identifier and accessibility of the object to which it refers are not the
same thing. As a simple example, take the variable(s) x in listing 13.1.

Here, the visibility scope of the identifier x that is declared in line 5 starts from that
line and goes to the end of the function main, but with a noticeable interruption: from
line 10 to 14, this visibility is shadowedC by another variable, also named x.

Takeaway 2.13.2.1 Identifiers only have visibility inside their scope, starting at their
declaration.

Takeaway 2.13.2.2 The visibility of an identifier can be shadowed by an identifier of the
same name in a subordinate scope.

13. STORAGE 169

LISTING 13.1. An example of shadowing with local variables

1 void squareIt(double* p) {
2 *p *= *p;
3 }
4 int main(void) {
5 double x = 35.0;
6 double* xp = &x;
7 {
8 squareIt (&x); /* Refers to double x */
9 ...

10 int x = 0; /* Shadow double x */
11 ...
12 squareIt(xp); /* Valid use of double x */
13 ...
14 }
15 ...
16 squareIt (&x); /* Refers to double x */
17 ...
18 }

LISTING 13.2. An example of shadowing with an extern variable

1 #include <stdio.h>
2
3 unsigned i = 1;
4
5 int main(void) {
6 unsigned i = 2; /* A new object */
7 if (i) {
8 extern unsigned i; /* An existing object */
9 printf("%u\n", i);

10 } else {
11 printf("%u\n", i);
12 }
13 }

We also see that the visibility of an identifier and the usability of the object it represents
are not the same thing. First, the double x object is used by all calls to squareIt, although
the identifier x is not visible at the point where the function is defined. Then, on line 12, we
pass the address of the double x variable to the function squareIt, although the identifier
is shadowed there.

Another example concerns declarations that are tagged with the storage class extern.
These always designate an object of static storage duration that is expected to be defined
at file scope;32 see listing 13.2.

This program has three declarations for variables named i, but only two definitions:
the declaration and definition on line 6 shadows the one on line 3. In turn, declaration
line 8 shadows line 6, but it refers to the same object as the object defined on line 3.[Exs 33]

Takeaway 2.13.2.3 Every definition of a variable creates a new, distinct object.

32In fact, such an object can be defined at file scope in another translation unit.
[Exs 33]Which value is printed by this program?

170 2. COGNITION

So in the following, the char arrays A and B identify distinct objects, with distinct
addresses. The expression A == B must always be false:

1 char const A[] = { 'e', 'n', 'd', '\0', };
2 char const B[] = { 'e', 'n', 'd', '\0', };
3 char const* c = "end";
4 char const* d = "end";
5 char const* e = "friend";
6 char const* f = (char const []){ 'e', 'n', 'd', '\0', };
7 char const* g = (char const []){ 'e', 'n', 'd', '\0', };

But how many distinct array objects are there in total? It depends. The compiler has a
lot of choices:

Takeaway 2.13.2.4 Read-only object literals may overlap.

In the previous example, we have three string literals and two compound literals.
These are all object literals, and they are read-only: string literals are read-only by def-
inition, and the two compound literals are const-qualified. Four of them have exactly the
same base type and content ('e', 'n', 'd', '\0'), so the four pointers c, d, f, and g
may all be initialized to the same address of one char array. The compiler may even save
more memory: this address may just be &e[3], by using the fact that end appears at the
end of friend.

As we have seen from these examples, the usability of an object not only is a lexical
property of an identifier or of the position of definition (for literals), but also depends on
the state of execution of the program. The lifetimeC of an object has a starting point and
an end point:

Takeaway 2.13.2.5 Objects have a lifetime outside of which they can’t be accessed.

Takeaway 2.13.2.6 Referring to an object outside of its lifetime has undefined behavior.

How the start and end points of an object are defined depends on the tools we use
to create it. We distinguish four different storage durationsC for objects in C: staticC
when it is determined at compile time, automaticC when it is automatically determined at
runtime, allocatedC , when it is explicitly determined by function calls malloc and friends,
and threadC when it is bound to a certain thread of execution.

Table 13.1 gives an overview of the complicated relationship between declarations
and their storage classes, initialization, linkage, storage duration, and lifetime. Without
going into too much detail for the moment, it shows that the usage of keywords and the
underlying terminology are quite confusing.

First, unlike what the name suggests, the storage class extern may refer to identifiers
with external or internal linkage.34 Here, in addition to the compiler, an identifier with
linkage is usually managed by another external program, the linkerC . Such an identifier
is initialized at startup of the program, even before it enters main, and the linker ensures
that. Identifiers that are accessed from different object files need external linkage so they all
access the same object or function, and so the linker is able to establish the correspondence.

Important identifiers with external linkage that we have seen are the functions of the C
library. They reside in a system libraryC , usually called something like libc.so, and not
in the object file you created. Otherwise, a global, file scope, object, or function that has
no connection to other object files should have internal linkage. All other identifiers have
no linkage.35

34Note that linkage is a property of identifiers, not of the objects they represent.
35A better keyword for extern would perhaps be linkage.

13. STORAGE 171

Then, static storage duration is not the same as declaring a variable with the storage
class static. The latter is merely enforcing that a variable or function has internal linkage.
Such a variable may be declared in file scope (global) or in block scope (local). 36You
probably have not yet called the linker of your platform explicitly. Usually, its execution is
hidden behind the compiler frontend that you are calling, and a dynamic linker may only
kick in as late as program startup without being noticed.

For the first three types of storage duration, we have seen a lot of examples. Thread
storage duration (_Thread_local or thread_local) is related to C’s thread API, which
we will see later, in section 18.

Allocated storage duration is straightforward: the lifetime of such an object starts from
the corresponding call to malloc, calloc, realloc, or aligned_alloc that creates it. It
ends with a call to free or realloc that destroys it, or, if no such call is issued, with the
end of the program execution.

The two other cases of storage duration need additional explanation, and so we will
discuss them in more length next.

13.2.1. Static storage duration. Objects with static storage duration can be defined
two ways:

• Objects that are defined in file scope. Variables and compound literals can have
that property.

36A better keyword for static in this context would perhaps be internal, with the understanding that any
form of linkage implies static storage duration.

Class Scope Definition Linkage Duration Lifetime
Initialized File Yes External Static Whole execution
extern, initialized File Yes External Static Whole execution
Compound literal File Yes N/A Static Whole execution
String literal Any Yes N/A Static Whole execution
static, initialized Any Yes Internal Static Whole execution
Uninitialized File Tentative External Static Whole execution
extern, uninitialized Any No Induced Static Whole execution
static, uninitialized Any Tentative Internal Static Whole execution
thread_local File Yes External Thread Whole thread
extern thread_local Any No External Thread Whole thread
static thread_local Any Yes internal Thread Whole thread
Compound literal N/A
Non-VLA None
Non-VLA, auto Block Yes None Automatic Block of definition
register None
VLA Block Yes None Automatic From definition to

end of block

Function return Block Yes None Automatic To the end of
with array expression

TABLE 13.1. Storage classes, scope, linkage of identifiers, and storage
duration of the associated objects. Tentative indicates that a definition is
implied only if there is no other definition with an initializer. Induced
indicates that the linkage is internal if another declaration with internal
linkage has been met prior to that declaration; otherwise, it is external.

172 2. COGNITION

• Variables that are declared inside a function block and that have the storage class
specifier static.

Such objects have a lifetime that is the entire program execution. Because they are
considered alive before any application code is executed, they can only be initialized with
expressions that are known at compile time or can be resolved by the system’s process
startup procedure. Here’s an example:

1 double A = 37;
2 double* p
3 = &(double){ 1.0, };
4 int main(void) {
5 static double B;
6 }

This defines four objects of static storage duration, those identified with A, p, and B, and
a compound literal defined in line 3. Three of them have type double, and one has type
double*.

All four objects are properly initialized from the start; three of them are initialized
explicitly, and B is initialized implicitly with 0.

Takeaway 2.13.2.7 Objects with static storage duration are always initialized.

The initialization of p is an example that needs a bit more magic than the compiler
itself can offer. It uses the address of another object. Such an address can usually only be
computed when the execution starts. This is why most C implementations need the concept
of a linker, as we discussed earlier.

The example of B shows that an object with a lifetime that is the entire program exe-
cution isn’t necessarily visible in the entire program. The extern example also shows that
an object with static storage duration that is defined elsewhere can become visible inside a
narrow scope.

13.2.2. Automatic storage duration. This is the most complicated case: rules for au-
tomatic storage duration are implicit and therefore need the most explanation. There are
several cases of objects that can be defined explicitly or implicitly that fall into this cate-
gory:

• Any block-scope variables that are not declared static, that are declared as
auto (the default) or register

• Block-scope compound literals
• Some temporary objects that are returned by function calls

The simplest and most current case for the lifetime of automatic objects is when the object
is not a variable-length array (VLA).

Takeaway 2.13.2.8 Unless they are VLA or temporary objects, automatic objects have
a lifetime corresponding to the execution of their block of definition.

That is, most local variables are created when program execution enters the scope in
which they are defined, and they are destroyed when it leaves that scope. But, because of
recursion, several instancesC of the same object may exist at the same time:

Takeaway 2.13.2.9 Each recursive call creates a new local instance of an automatic
object.

Objects with automatic storage duration have a big advantage for optimization: the
compiler usually sees the full usage of such a variable and, with this information, is able
to decide if it may alias. This is where the difference between the auto and register
variables comes into play:

13. STORAGE 173

Takeaway 2.13.2.10 The & operator is not allowed for variables declared with register.

With that, we can’t inadvertently take the address of a register variable (takeaway 2.12.3.2).
As a simple consequence, we get:

Takeaway 2.13.2.11 Variables declared with register can’t alias.

So, with register variable declarations, the compiler can be forced to tell us where
we are taking the address of a variable, so we may identify spots that may have some
optimization potential. This works well for all variables that are not arrays and that contain
no arrays.

Takeaway 2.13.2.12 Declare local variables that are not arrays in performance-critical
code as register.

Arrays play a particular role here because they decay to the address of their first ele-
ment in almost all contexts. So, for arrays, we need to be able to take addresses.

Takeaway 2.13.2.13 Arrays with storage class register are useless.

There is another case where the presence of arrays needs special treatment. Some
return values of functions can really be chimeras: objects with temporary lifetime. As you
know now, functions normally return values and as such values are not addressable. But if
the return type contains an array type, we must be able to take the address implicitly, so the
[] operator is well defined. Therefore, the following function return is a temporary object,
of which we may implicitly take an address by using the member designator .ory[0]:

1 struct demo { unsigned ory [1]; };
2 struct demo mem(void);
3
4 printf("mem().ory[0]␣is␣%u\n", mem().ory [0]);

The only reason objects with temporary lifetime exist in C is to be able to access
members of such a function return value. Don’t use them for anything else.

Takeaway 2.13.2.14 Objects of temporary lifetime are read-only.

Takeaway 2.13.2.15 Temporary lifetime ends at the end of the enclosing full expression.

That is, their life ends as soon as the evaluation of the expression in which they occur
is terminated. For example, in the previous example, the temporary object ceases to exist
as soon as the argument for printf is constructed. Compare this to the definition of a
compound literal: a compound literal would live on until the enclosing scope of the printf
terminates.

13.3. Digression: using objects "before" their definition. The following section
goes into more detail about how automatic objects spring to life (or not). It is a bit tough,
so if you are not up to it right now, you might skip it and come back to it later. It will
be needed in order to understand subsection 13.5 about concrete machine models, but that
subsection is a digression, too. Also, it introduces the new features goto and labels, which
we need later, in subsection 14.5 for handling errors.

Let us get back to the rule for the lifetime of ordinary automatic objects (takeaway 2.13.2.8).
It is quite particular, if you think about it: the lifetime of such an object starts when its scope
of definition is entered, not, as one would perhaps expect, later, when its definition is first
encountered during execution.

174 2. COGNITION

LISTING 13.3. A contrived example for the use of a compound literal

3 void fgoto(unsigned n) {
4 unsigned j = 0;
5 unsigned* p = 0;
6 unsigned* q;
7 AGAIN:
8 if (p) printf("%u:␣p␣and␣q␣are␣%s,␣*p␣is␣%u\n",
9 j,

10 (q == p) ? "equal" : "unequal",
11 *p);
12 q = p;
13 p = &((unsigned){ j, });
14 ++j;
15 if (j <= n) goto AGAIN;
16 }

To note the difference, let us look at listing 13.3, which is a variant of an example that
can be found in the C standard document.

We will be particularly interested in the lines printed if this function is called as
fgoto(2). On my computer, the output looks like this:

Terminal

0 1: p and q are unequal, *p is 0

1 2: p and q are equal, *p is 1

Admittedly, this code is a bit contrived. It uses a new construct that we haven’t yet
seen in action, goto. As the name indicates, this is a jump statementC . In this case, it
instructs the computer to continue execution at labelC AGAIN. Later, we will see contexts
where using goto makes a bit more sense. The demonstrative purpose here is just to jump
over the definition of the compound literal.

So, let us look at what happens with the printf call during execution. For n == 2,
execution meets the corresponding line three times; but because p is 0 initially, at the first
passage, the printf call itself is skipped. The values of our three variables in that line are

j p q printf
0 0 Undetermined Skipped
1 Addr of literal of j = 0 0 printed
2 Addr of literal of j = 1 Addr of literal of j = 0 printed

Here we see that for j==2 pointers, p and q hold addresses that are obtained at different
iterations. So why, then, does my printout say that both addresses are equal? Is this just
a coincidence? Or is there undefined behavior because I am using the compound literal
lexically at a place before it is defined?

The C standard prescribes that the output shown here must be produced. In particular,
for j==2, the values of p and q are equal and valid, and the value of the object they are
pointing to is 1. Or, stated another way, in this example, the use of *p is well defined,
although lexically the evaluation of *p precedes the definition of the object. Also, there is
exactly one such compound literal, and therefore the addresses are equal for j==2.

Takeaway 2.13.3.1 For an object that is not a VLA, lifetime starts when the scope of the
definition is entered, and it ends when that scope is left.

13. STORAGE 175

Takeaway 2.13.3.2 Initializers of automatic variables and compound literals are evalu-
ated each time the definition is met.

In this example, the compound literal is visited three times and set to the values 0, 1,
and 2 in turn.

For a VLA, the lifetime is given by a different rule.

Takeaway 2.13.3.3 For a VLA, lifetime starts when the definition is encountered and
ends when the visibility scope is left.

So for a VLA, our strange trick of using goto would not be valid: we are not allowed
to use the pointer to a VLA in code that precedes the definition, even if we still are inside
the same block. The reason for this special treatment of VLAs is that their size is a runtime
property and therefore the space for it simply can’t be allocated when the block of the
declaration is entered.

13.4. Initialization. In subsection 5.5, we discussed the importance of initialization.
It is crucial to guarantee that a program starts in a well-defined state and stays so throughout
execution. The storage duration of an object determines how it is initialized.

Takeaway 2.13.4.1 Objects of static or thread-storage duration are initialized by de-
fault.

As you probably recall, such a default initialization is the same as initializing all mem-
bers of an object by 0. In particular, default initialization works well for base types that
might have a nontrivial representation for their 0 value: namely pointers and floating point
types.

For other objects, automatic or allocated, we must do something.

Takeaway 2.13.4.2 Objects of automatic or allocated storage duration must be initial-
ized explicitly.

The simplest way to achieve initialization are initializers, which put variables and
compound literals in a well-defined state as soon as they become visible. For arrays that
we allocate as VLA, or through dynamic allocation, this is not possible, so we have to
provide initialization through assignment. In principle, we could do this manually each
time we allocate such an object, but such code becomes difficult to read and to maintain,
because the initialization parts may visually separate definition and use. The easiest way
to avoid this is to encapsulate initialization into functions:

Takeaway 2.13.4.3 Systematically provide an initialization function for each of your
data types.

Here, the emphasis is on systematically: you should have a consistent convention for
how such initializing functions should work and how they should be named. To see that,
let us go back to rat_init, the initialization function for our rat data type. It implements
a specific API for such functions:

• For a type toto, the initialization function is named toto_init.
• The first argument to such a _init function is the pointer to the object that is to

be initialized.
• If that pointer to object is null, the function does nothing.
• Other arguments can be provided to pass initial values for certain members.
• The function returns the pointer to the object it received or 0 if an error occurred.

With such properties, such a function can be used easily in an initializer for a pointer:

176 2. COGNITION

rat const* myRat = rat_init(malloc(sizeof(rat)), 13, 7);

Observe that this has several advantages:
• If the call to malloc fails by returning 0, the only effect is that myRat is initialized

to 0. Thus myRat is always in a well-defined state.
• If we don’t want the object to be changed afterward, we can qualify the pointer

target as const from the start. All modification of the new object happens inside
the initialization expression on the right side.

Since such initialization can then appear in many places, we can also encapsulate this
into another function:

1 rat* rat_new(long long numerator ,
2 unsigned long long denominator) {
3 return rat_init(malloc(sizeof(rat)),
4 numerator ,
5 denominator);
6 }

The initialization using that function becomes

rat const* myRat = rat_new (13, 7);

Macro addicts like myself can even easily define a type-generic macro that does such
an encapsulation once and for all:

#define P99_NEW(T, ...) T ## _init(malloc(sizeof(T)), __VA_ARGS__)

With this, we could have written the earlier initialization as

rat const* myRat = P99_NEW(rat , 13, 7);

This has the advantage of being at least as readable as the rat_new variant, but it
avoids the additional declaration of such a function for all types that we define.

Such macro definitions are frowned upon by many, so some projects probably will not
accept this as a general strategy, but you should at least be aware that the possibility exists.
It uses two features of macros that we have not yet encountered:

• Concatenation of tokens is achieved with the ## operator. Here, T ## _init
melds the argument T and _init into one token: with rat, this produces rat_init;
with toto, this produces toto_init.

• The construct ... provides an argument list of variable length. The whole set of
arguments that is passed after the first is accessible inside the macro expansion
as __VA_ARGS__. That way, we can pass any number of arguments as required
by the corresponding _init function to P99_NEW.

If we have to initialize arrays by means of a for loop, things get even uglier. Here also
it is easy to encapsulate with a function:

1 rat* rat_vinit(size_t n, rat p[n]) {
2 if (p)
3 for (size_t i = 0; i < n; ++i)
4 rat_init(p+i, 0, 1);
5 return p;
6 }

With such a function, again, initialization becomes straightforward:

13. STORAGE 177

rat* myRatVec = rat_vinit (44, malloc(sizeof(rat [44])));

Here, encapsulation into a function is really better, since repeating the size may easily
introduce errors:

1 rat* rat_vnew(size_t size) {
2 return rat_vinit(size , malloc(sizeof(rat[size])));
3 }

13.5. Digression: a machine model. Up to now, we mostly argued about C code
from within, using the internal logic of the language to describe what was going on. This
section is an optional digression that deviates from that: it is a glimpse into the machine
model of a concrete architecture. We will see more in detail how a simple function is
translated into this model and, in particular, how automatic storage duration is realized. If
you really can’t bear it yet, you may skip it for now. Otherwise, remember not to panic,
and dive in.

Traditionally, computer architectures were described with the von Neumann model.37

In this model, a processing unit has a finite number of hardware registers that can hold
integer values, a main memory that holds the program as well as data and that is linearly
addressable, and a finite instruction set that describes the operations that can be done with
these components.

The intermediate programming languages that are usually used to describe machine in-
structions as they are understood by your CPU are called assemblerC , and they still pretty
much build upon the von Neumann model. There is not one unique assembler language
(like C, which is valid for all platforms) but an entire set of dialects that take different par-
ticularities into account: of the CPU, the compiler, or the operating system. The assembler
that we use here is the one used by the gcc compiler for the x86_64 processor architec-
ture.[Exs 38] If you don’t know what that means, don’t worry; this is just an example of one
such architecture.

Listing 13.4 shows an assembler printout for the function fgoto from listing 13.3.
Such assembler code operates with instructionsC on hardware registers and memory loca-
tions. For example, the line movl $0, -16(%rbp) stores (moves) the value 0 to the location
in memory that is 16 bytes below the one indicated by register %rbp. The assembler pro-
gram also contains labelsC that identify certain points in the program. For example, fgoto
is the entry pointC of the function, and .L_AGAIN is the counterpart in assembler to the
goto label AGAIN in C.

As you probably have guessed, the text on the right after the # character are comments
that try to link individual assembler instructions to their C counterparts.

This assembler function uses hardware registers %eax, %ecx, %edi, %edx, %esi, %rax,
%rbp, %rcx, %rdx, and %rsp. This is much more than the original von Neumann machine
had, but the main ideas are still present: we have some general-purpose registers that are
used to represent values of the state of a program’s execution. Two others have very special
roles: %rbp (base pointer) and %rsp (stack pointer).

The function disposes of a reserved area in memory, often called The StackC , that
holds its local variables and compound literals. The “upper” end of that area is designated
by the %rbp register, and the objects are accessed with negative offsets relative to that
register. For example, the variable n is found from position -36 before %rbp encoded
as -36(%rbp). The following table represents the layout of this memory chunk that is

37Invented around 1945 by J. Presper Eckert and John William Mauchly for the ENIAC project; first described
by John von Neumann (1903 – 1957, also known as Neumann János Lajos and Johann Neumann von Margitta),
one of the pioneers of modern science, in von Neumann [1945].

[Exs 38]Find out which compiler arguments produce assembler output for your platform.

178 2. COGNITION

LISTING 13.4. An assembler version of the fgoto function

10 .type fgoto , @function
11 fgoto:
12 pushq %rbp # Save base pointer
13 movq %rsp , %rbp # Load stack pointer
14 subq $48, %rsp # Adjust stack pointer
15 movl %edi , -36(%rbp) # fgoto #0 => n
16 movl $0, -4(%rbp) # init j
17 movq $0, -16(%rbp) # init p
18 .L_AGAIN:
19 cmpq $0, -16(%rbp) # if (p)
20 je .L_ELSE
21 movq -16(%rbp), %rax # p ==> rax
22 movl (%rax), %edx # *p ==> edx
23 movq -24(%rbp), %rax # (== q)?
24 cmpq -16(%rbp), %rax # (p ==)?
25 jne .L_YES
26 movl $.L_STR_EQ , %eax # Yes
27 jmp .L_NO
28 .L_YES:
29 movl $.L_STR_NE , %eax # No
30 .L_NO:
31 movl -4(%rbp), %esi # j ==> printf #1
32 movl %edx , %ecx # *p ==> printf #3
33 movq %rax , %rdx # eq/ne ==> printf #2
34 movl $.L_STR_FRMT , %edi # frmt ==> printf #0
35 movl $0, %eax # clear eax
36 call printf
37 .L_ELSE:
38 movq -16(%rbp), %rax # p ==|
39 movq %rax , -24(%rbp) # ==> q
40 movl -4(%rbp), %eax # j ==|
41 movl %eax , -28(%rbp) # ==> cmp_lit
42 leaq -28(%rbp), %rax # &cmp_lit ==|
43 movq %rax , -16(%rbp) # ==> p
44 addl $1, -4(%rbp) # ++j
45 movl -4(%rbp), %eax # if (j
46 cmpl -36(%rbp), %eax # <= n)
47 jbe .L_AGAIN # goto AGAIN
48 leave # Rearange stack
49 ret # return statement

reserved for function fgoto and the values that are stored there at three different points of
the execution of the function.

. . . printf fgoto caller . . .
Position −48 −36 −28 −24 −16 −8 −4 rbp
Meaning n cmp_lit q p j
After init /////garb /////garb 2 /////garb /////garb 0 /////garb 0
After iter 0 /////garb /////garb 2 0 0 rbp-28 /////garb 1
After iter 1 /////garb /////garb 2 1 rbp-28 rbp-28 /////garb 2

This example is of particular interest for learning about automatic variables and how
they are set up when execution enters the function. On this particular machine, when enter-
ing fgoto, three registers hold information for this call: %edi holds the function argument,

SUMMARY 179

n; %rbp points to the base address of the calling function; and %rsp points to the top address
in memory where this call to fgoto may store its data.

Now let us consider how the above assembler code (listing 13.4) sets up things. Right
at the start, fgoto executes three instructions to set up its “world” correctly. It saves %rbp

because it needs this register for its own purpose, it moves the value from %rsp to %rbp, and
then it decrements %rsp by 48. Here, 48 is the number of bytes the compiler has computed
for all automatic objects that the fgoto needs. Because of this simple type of setup, the
space reserved by that procedure is not initialized but filled with garbage. In the three
following instructions, three of the automatic objects are then initialized (n, j, and p), but
others remain uninitialized until later.

After this setup, the function is ready to go. In particular, it can easily call another
function: %rsp now points to the top of a new memory area that a called function can use.
This can be seen in the middle part, after the label .L_NO. This part implements the call to
printf: it stores the four arguments the function is supposed to receive in registers %edi,
%esi, %ecx, %rdx, in that order; clears %eax; and then calls the function.

To summarize, the setup of a memory area for the automatic objects (without VLA)
of a function only needs a few instructions, regardless of how many automatic objects are
effectively used by the function. If the function had more, the magic number 48 would
need to be modified to the new size of the area.

As a consequence of the way this is done,
• Automatic objects are usually available from the start of a function or scope.
• Initialization of automatic variables is not enforced.

This does a good job of mapping the rules for the lifetime and initialization of automatic
objects in C.

The earlier assembler output is only half the story, at most. It was produced with-
out optimization, just to show the principle assumptions that can be made for such code
generation. When using optimization, the as-if Rule (takeaway 1.5.1.7) allows us to re-
organize the code substantially. With full optimization, my compiler produces something
like listing 13.5.

As you can see, the compiler has completely restructured the code. This code just
reproduces the effects that the original code had: its output is the same as before. But it
doesn’t use objects in memory, doesn’t compare pointers for equality, and has no trace of
the compound literal. For example, it doesn’t implement the iteration for j=0 at all. This
iteration has no effect, so it is simply omitted. Then, for the other iterations, it distin-
guishes a version with j=1, where the pointers p and q of the C program are known to be
different. Then, the general case has to increment j and to set up the arguments for printf
accordingly.[Exs 39][Exs 40]

All we have seen here is code that doesn’t use VLA. These change the picture, because
the trick that simply modifies %rsp with a constant doesn’t work if the needed memory is
not a constant size. For a VLA, the program has to compute the size during execution from
the actual values of the bounds of the VLA, has to adjust %rsp accordingly there, and then
it has to undo that modification of %rsp once execution leaves the scope of the definition
of the VLA. So here the value of adjustment for %rsp cannot be computed at compile time,
but must be determined during the execution of the program.

Summary

• Storage for a large number of objects or for objects that are large in size can be
allocated and freed dynamically. We have to keep track of this storage carefully.

[Exs 39]Using the fact that p is assigned the same value over and over again, write a C program that gets closer to
what the optimized assembler version looks like.

[Exs 40]Even the optimized version leaves room for improvement: the inner part of the loop can still be shortened.
Write a C program that explores this potential when compiled with full optimization.

180 2. COGNITION

LISTING 13.5. An optimized assembler version of the fgoto function

12 .type fgoto , @function
13 fgoto:
14 pushq %rbp # Save base pointer
15 pushq %rbx # Save rbx register
16 subq $8, %rsp # Adjust stack pointer
17 movl %edi , %ebp # fgoto #0 => n
18 movl $1, %ebx # init j, start with 1
19 xorl %ecx , %ecx # 0 ==> printf #3
20 movl $.L_STR_NE , %edx # "ne" ==> printf #2
21 testl %edi , %edi # if (n > 0)
22 jne .L_N_GT_0
23 jmp .L_END
24 .L_AGAIN:
25 movl %eax , %ebx # j+1 ==> j
26 .L_N_GT_0:
27 movl %ebx , %esi # j ==> printf #1
28 movl $.L_STR_FRMT , %edi # frmt ==> printf #0
29 xorl %eax , %eax # Clear eax
30 call printf
31 leal 1(%rbx), %eax # j+1 ==> eax
32 movl $.L_STR_EQ , %edx # "eq" ==> printf #2
33 movl %ebx , %ecx # j ==> printf #3
34 cmpl %ebp , %eax # if (j <= n)
35 jbe .L_AGAIN # goto AGAIN
36 .L_END:
37 addq $8, %rsp # Rewind stack
38 popq %rbx # Restore rbx
39 popq %rbp # Restore rbp
40 ret # return statement

• Identifier visibility and storage duration are different things.
• Initialization must be done systematically with a coherent strategy for each type.
• C’s allocation strategy for local variables maps well to low-level handling of

function stacks.

14. MORE INVOLVED PROCESSING AND IO 181

14. More involved processing and IO

This section covers
• Working with pointers
• Formatting input
• Handling extended character sets
• Input and output with binary streams
• Checking errors and cleaning up

Now that we know about pointers and how they work, we will shed new light on
some of the C library features. C’s text processing is incomplete without using pointers, so
we will start this section with an elaborated example in section 14.1. Then we will look at
functions for formatted input (section 14.1); these require pointers as arguments, so we had
to delay their presentation until now. A whole new series of functions is then presented
to handle extended character sets (section 14.3) and binary streams (section 14.4), and
we round out this section and the entire level with a discussion of clean error handling
(section 14.4)).

14.1. Text processing. As a first example, consider the following program, which
that reads a series of lines with numbers from stdin and writes these same numbers in a
normalized way to stdout as comma-separated hexadecimal numbers:

. numberline.c

246 int main(void) {
247 char lbuf [256];
248 for (;;) {
249 if (fgetline(sizeof lbuf , lbuf , stdin)) {
250 size_t n;
251 size_t* nums = numberline(strlen(lbuf)+1, lbuf , &n, 0);
252 int ret = fprintnumbers(stdout , "%#zX", ",\t", n, nums);
253 if (ret < 0) return EXIT_FAILURE;
254 free(nums);
255 } else {
256 if (lbuf [0]) { /* a partial line has been read */
257 for (;;) {
258 int c = getc(stdin);
259 if (c == EOF) return EXIT_FAILURE;
260 if (c == '\n') {
261 fprintf(stderr , "line␣too␣long:␣%s\n", lbuf);
262 break;
263 }
264 }
265 } else break; /* regular end of input */
266 }
267 }
268 }

This program splits the job in three different tasks:
• fgetline to read a line of text
• numberline to split such a line in a series of numbers of type size_t
• fprintnumbers to print them

At the heart is the function numberline. It splits the lbuf string that it receives into
numbers, allocates an array to store them, and also returns the count of these numbers
through the pointer argument np if that is provided:

182 2. COGNITION

numberline.c

numberline: interpret string lbuf as a sequence of numbers represented with base

Returns: a newly allocated array of numbers as found in lbuf

Parameters:
lbuf is supposed to be a string
np if non-null, the count of numbers is stored in *np
base value from 0 to 36, with the same interpretation as for

strtoul

Remarks: The caller of this function is responsible to free the array that is returned.

size_t* numberline(size_t size , char const lbuf[restrict size
],

size_t*restrict np, int base);

That function itself is split into two parts, which perform quite different tasks. One
performs the task of interpreting the line, numberline_inner. The other, numberline
itself, is just a wrapper around the first that verifies or ensures the prerequisites for the first.
Function numberline_inner puts the C library function strtoull in a loop that collects
the numbers and returns a count of them.

Now we see the use of the second parameter of strtoull. Here, it is the address of
the variable next, and next is used to keep track of the position in the string that ends the
number. Since next is a pointer to char, the argument to strtoull is a pointer to a pointer
to char:

. numberline.c

97 static
98 size_t numberline_inner(char const*restrict act ,
99 size_t numb[restrict], int base){

100 size_t n = 0;
101 for (char* next = 0; act [0]; act = next) {
102 numb[n] = strtoull(act , &next , base);
103 if (act == next) break;
104 ++n;
105 }
106 return n;
107 }

Suppose strtoull is called as strtoull("0789a", &next, base). According to
the value of the parameter base, that string is interpreted differently. If, for example, base
has the value 10, the first non-digit is the character 'a' at the end:

Base Digits Number *next
8 2 7 '8'

10 4 789 'a'
16 5 30874 '\0'

0 2 7 '8'

Remember the special rules for base 0. The effective base is deduced from the first (or first
two) characters in the string. Here, the first character is a '0', so the string is interpreted
as being octal, and parsing stops at the first non-digit for that base: '8'.

There are two conditions that may end the parsing of the line that numberline_inner
receives:

14. MORE INVOLVED PROCESSING AND IO 183

• act points to a string termination: to a 0 character.
• Function strtoull doesn’t find a number, in which case next is set to the value

of act.
These two conditions are found as the controlling expression of the for loop and as if-
break condition inside.

Note that the C library function strtoull has a historical weakness: the first argument
has type char const*, whereas the second has type char**, without const qualification.
This is why we had to type next as char* and couldn’t use char const*. As a result of a
call to strtoull, we could inadvertently modify a read-only string and crash the program.

Takeaway 2.14.1.1 The string strto... conversion functions are not const-safe.

Now, the function numberline itself provides the glue around numberline_inner:
• If np is null, it is set to point to an auxiliary.
• The input string is checked for validity.
• An array with enough elements to store the values is allocated and tailored to the

appropriate size, once the correct length is known.
We use three functions from the C library: memchr, malloc, and realloc. As in

previous examples, a combination of malloc and realloc ensures that we have an array
of the necessary length:

. numberline.c

109 size_t* numberline(size_t size , char const lbuf[restrict size],
110 size_t*restrict np, int base){
111 size_t* ret = 0;
112 size_t n = 0;
113 /* Check for validity of the string , first. */
114 if (memchr(lbuf , 0, size)) {
115 /* The maximum number of integers encoded.
116 To see that this may be as much look at
117 the sequence 08 08 08 08 ... and suppose
118 that base is 0. */
119 ret = malloc(sizeof(size_t [1+(2* size)/3]));
120
121 n = numberline_inner(lbuf , ret , base);
122
123 /* Supposes that shrinking realloc will always succeed. */
124 size_t len = n ? n : 1;
125 ret = realloc(ret , sizeof(size_t[len]));
126 }
127 if (np) *np = n;
128 return ret;
129 }

The call to memchr returns the address of the first byte that has value 0, if there is any,
or (void*)0 if there is none. Here, this is just used to check that within the first size bytes
there effectively is a 0 character. That way, it guarantees that all the string functions used
underneath (in particular, strtoull) operate on a 0-terminated string.

With memchr, we encounter another problematic interface. It returns a void* that
potentially points into a read-only object.

Takeaway 2.14.1.2 The memchr and strchr search functions are not const-safe.

184 2. COGNITION

In contrast, functions that return an index position within the string would be safe.

Takeaway 2.14.1.3 The strspn and strcspn search functions are const-safe.

Unfortunately, they have the disadvantage that they can’t be used to check whether a
char-array is in fact a string. So they can’t be used here.

Now, let us look at the second function in our example:

numberline.c

fgetline: read one text line of at most size-1 bytes.

The '\n' character is replaced by 0.

Returns: s if an entire line was read successfully. Otherwise, 0 is returned and s
contains a maximal partial line that could be read. s is null terminated.

char* fgetline(size_t size , char s[restrict size],
FILE*restrict stream);

This is quite similar to the C library function fgets. The first difference is the in-
terface: the parameter order is different, and the size parameter is a size_t instead of
an int. Like fgets, it returns a null pointer if the read from the stream failed. Thus the
end-of-file condition is easily detected on stream.

More important is that fgetline handles another critical case more gracefully. It
detects whether the next input line is too long or whether the last line of the stream ends
without a '\n' character:

. numberline.c

131 char* fgetline(size_t size , char s[restrict size],
132 FILE*restrict stream){
133 s[0] = 0;
134 char* ret = fgets(s, size , stream);
135 if (ret) {
136 /* s is writable so can be pos. */
137 char* pos = strchr(s, '\n');
138 if (pos) *pos = 0;
139 else ret = 0;
140 }
141 return ret;
142 }

The first two lines of the function guarantee that s is always null terminated: either
by the call to fgets, if successful, or by enforcing it to be an empty string. Then, if
something was read, the first '\n' character that can be found in s is replaced with 0. If
none is found, a partial line has been read. In that case, the caller can detect this situation
and call fgetline again to attempt to read the rest of the line or to detect an end-of-file
condition.[Exs 41]

In addition to fgets, this uses strchr from the C library. The lack of const-safeness
of this function is not an issue here, since s is supposed to be modifiable anyway. Un-
fortunately, with the interfaces as they exist now, we always have to do this assessment
ourselves.

[Exs 41]Improve the main of the example such that it is able to cope with arbitrarily long input lines.

14. MORE INVOLVED PROCESSING AND IO 185

Since it involves a lot of detailed error handling, we will go into detail about the
function fprintnumbers in subsection 14.5. For our purpose here, we restrict ourselves to
the discussion of function sprintnumbers, which is a bit simpler because it only writes to
a string, instead of a stream, and because it just assumes that the buffer buf that it receives
provides enough space:

numberline.c

sprintnumbers: print a series of numbers nums in buf, using printf format form,
separated by sep characters and terminated with a newline character.

Returns: the number of characters printed to buf.

This supposes that tot and buf are big enough and that form is a format suitable to print
size_t.

int sprintnumbers(size_t tot , char buf[restrict tot],
char const form[restrict static 1],
char const sep[restrict static 1],
size_t len , size_t nums[restrict len]);

The function sprintnumbers uses a function of the C library that we haven’t met yet:
sprintf. Its formatting capacities are the same as those of printf and fprintf, only it
doesn’t print to a stream but rather to a char array:

. numberline.c

149 int sprintnumbers(size_t tot , char buf[restrict tot],
150 char const form[restrict static 1],
151 char const sep[restrict static 1],
152 size_t len , size_t nums[restrict len]) {
153 char* p = buf; /* next position in buf */
154 size_t const seplen = strlen(sep);
155 if (len) {
156 size_t i = 0;
157 for (;;) {
158 p += sprintf(p, form , nums[i]);
159 ++i;
160 if (i >= len) break;
161 memcpy(p, sep , seplen);
162 p += seplen;
163 }
164 }
165 memcpy(p, "\n", 2);
166 return (p-buf)+1;
167 }

The function sprintf always ensures that a 0 character is placed at the end of the
string. It also returns the length of that string, which is the number of characters before the
0 character that have been written. This is used in the example to update the pointer to the
current position in the buffer. sprintf still has an important vulnerability:

Takeaway 2.14.1.4 sprintf makes no provision against buffer overflow.

That is, if we pass an insufficient buffer as a first argument, bad things will happen.
Here, inside sprintnumbers, much like sprintf itself, we suppose the buffer is large

186 2. COGNITION

enough to hold the result. If we aren’t sure the buffer can hold the result, we can use the C
library function snprintf, instead:

1 int snprintf(char*restrict s, size_t n, char const*restrict form ,
...);

This function ensures in addition that no more than n bytes are ever written to s. If the
return value is greater than or equal to n, the string is been truncated to fit. In particular, if
n is 0, nothing is written into s.

Takeaway 2.14.1.5 Use snprintf when formatting output of unknown length.

In summary, snprintf has a lot of nice properties:
• The buffer s will not overflow.
• After a successful call, s is a string.
• When called with n and s set to 0, snprintf just returns the length of the string

that would have been written.
By using that, a simple for loop to compute the length of all the numbers printed on

one line looks like this:

. numberline.c

182 /* Count the chars for the numbers. */
183 for (size_t i = 0; i < len; ++i)
184 tot += snprintf(0, 0, form , nums[i]);

We will see later how this is used in the context of fprintnumbers.

CHALLENGE 15 (Text processing in strings). We’ve covered quite a bit about text process-
ing, so let’s see if we can actually use it.
Can you search for a given word in a string?
Can you replace a word in a string and return a copy with the new contents?
Can you implement some regular-expression-matching functions for strings? For example,
find a character class such as [A-Q] or [^0-9], match with * (meaning “anything”), or
match with ? (meaning “any character”).
Or can you implement a regular-expression-matching function for POSIX character classes
such as [[:alpha:]], [[:digit:]], and so on?
Can you stitch all these functionalities together to search for a regexp in a string?
Do query-replace with regexp against a specific word?
Extend a regexp with grouping?
Extend query-replace with grouping?

14.2. Formatted input. Similar to the printf family of functions for formatted out-
put, the C library has a series of functions for formatted input: fscanf for input from an
arbitrary stream, scanf for stdin, and sscanf from a string. For example, the following
would read a line of three double values from stdin:

1 double a[3];
2 /* Read and process an entire line with three double values. */

14. MORE INVOLVED PROCESSING AND IO 187

TABLE 14.1. Format specifications for scanf and similar functions,
with the general syntax [XX][WW][LL]SS

XX * Assignment suppression
WW Field width Maximum number of input characters
LL Modifier Select width of target type
SS Specifier Select conversion

TABLE 14.2. Format specifiers for scanf and similar functions. With
an 'l' modifier, specifiers for characters or sets of characters ('c', 's',
'[') transform multibyte character sequences on input to wide-character
wchar_t arguments; see subection 14.3.

SS Conversion Pointer to Skip space Analogous to function
'd' Decimal Signed type Yes strtol, base 10
'i' Decimal, octal, or hex Signed type Yes strtol, base 0
'u' Decimal Unsigned type Yes strtoul, base 10
'o' Octal Unsigned type Yes strtoul, base 8
'x' Hexadecimal Unsigned type Yes strtoul, base 16
'aefg' Floating point Floating point Yes strtod
'%' '%' character No assignment No
'c' Characters char No memcpy
's' Non-whitespace char Yes strcspn with

"␣\f\n\r\t\v"
'[' Scan set String No strspn or strcspn
'p' Address void Yes
'n' Character count Signed type No

TABLE 14.3. Format modifiers for scanf and similar functions. Note
that the significance of float* and double* arguments is different than
for printf formats.

Character Type
"hh" char types
"h" short types
"" signed, unsigned, float, char arrays and strings
"l" long integer types, double, wchar_t characters and strings
"ll" long long integer types
"j" intmax_t, uintmax_t
"z" size_t
"t" ptrdiff_t
"L" long double

3 if (scanf("␣%lg␣%lg␣%lg␣", &a[0], &a[1], &a[2]) < 3) {
4 printf("not␣enough␣input␣values !\n");
5 }

Tables 14.1 to 14.3 give an overview of the format for specifiers. Unfortunately, these
functions are more difficult to use than printf and also have conventions that diverge from
printf in subtle ways.

188 2. COGNITION

• To be able to return values for all formats, the arguments are pointers to the type
that is scanned.

• Whitespace handling is subtle and sometimes unexpected. A space character,
'␣', in the format matches any sequence of whitespace: spaces, tabs, and new-
line characters. Such a sequence may in particular be empty or contain several
newline characters.

• String handling is different. Because the arguments to the scanf functions are
pointers anyway, the formats "%c" and "%s" both refer to an argument of type
char*. Where "%c" reads a character array of fixed size (of default 1), "%s"
matches any sequence of non-whitespace characters and adds a terminating 0
character.

• The specifications of types in the format have subtle differences compared to
printf, in particular for floating-point types. To be consistent between the two,
it is best to use "%lg" or similar for double and "%Lg" for long double, for
both printf and scanf.

• There is a rudimentary utility to recognize character classes. For example, a
format of "%[aeiouAEIOU]" can be used to scan for the vowels in the Latin
alphabet. In such a character class specification, the caret ^ negates the class if it
is found at the beginning. Thus "%[^\n]%*[\n]" scans a whole line (which must
be non-empty) and then discards the newline character at the end of the line.

These particularities make the scanf family of functions difficult to use. For exam-
ple, our seemingly simple example has the flaw (or feature) that it is not restricted to read
a single input line, but it would happily accept three double values spread over several
lines.[Exs 42] In most cases where you have a regular input pattern such as a series of num-
bers, they are best avoided.

14.3. Extended character sets. Up to now, we have used only a limited set of charac-
ters to specify our programs or the contents of string literals that we printed on the console:
a set consisting of the Latin alphabet, Arabic numerals, and some punctuation characters.
This limitation is a historical accident that originated in the early market domination by the
American computer industry, on one hand, and the initial need to encode characters with a
very limited number of bits on the other.43 As we saw with the use of the type name char
for the basic data cell, the concepts of a text character and an indivisible data component
were not very well separated at the start.

Latin, from which we inherited our character set, is long dead as a spoken language.
Its character set is not sufficient to encode the particularities of the phonetics of other lan-
guages. Among the European languages, English has the peculiarity that it encodes missing
sounds with combinations of letters such as ai, ou, and gh (fair enough), not with diacriti-
cal marks, special characters, or ligatures (fär ínóff), as do most of its cousins. So for other
languages that use the Latin alphabet, the possibilities were already quite restricted; but
for languages and cultures that use completely different scripts (Greek, Russian) or even
completely different concepts (Japanese, Chinese), this restricted American character set
was clearly not sufficient.

During the first years of market expansion around the world, different computer manu-
facturers, countries, and organizations provided native language support for their respective
communities more or less randomly, and added specialized support for graphical charac-
ters, mathematical typesetting, musical scores, and so on without coordination. It was
an utter chaos. As a result, interchanging textual information between different systems,
countries, and cultures was difficult if not impossible in many cases; writing portable code

[Exs 42]Modify the format string in the example such that it only accepts three numbers on a single line, separated
by blanks, and such that the terminating newline character (eventually preceded by blanks) is skipped.

43The character encoding that is dominantly used for the basic character set is referred to as ASCII: American
standard code for information interchange.

14. MORE INVOLVED PROCESSING AND IO 189

that could be used in the context of different languages and different computing platforms
resembled the black arts.

Luckily, these years-long difficulties are now mainly mastered, and on modern systems
we can write portable code that uses “extended” characters in a unified way. The following
code snippet shows how this is supposed to work:

. mbstrings-main.c

87 setlocale(LC_ALL , "");
88 /* Multibyte character printing only works after the locale
89 has been switched. */
90 draw_sep(TOPLEFT "␣©␣2014␣jεnz␣ " gυz,tεt␣", TOPRIGHT);

That is, near the beginning of our program, we switch to the “native” locale, and then
we can use and output text containing extended characters: here, phonetics (so-called IPA).
The output of this looks similar to

© 2014 jεnz "gυz,tεt

The means to achieve this are quite simple. We have some macros with magic string
literals for vertical and horizontal bars, and top-left and top-right corners:

. mbstrings-main.c

43 #define VBAR "\u2502" /**< a vertical bar character */
44 #define HBAR "\u2500" /**< a horizontal bar character */
45 #define TOPLEFT "\u250c" /**< topleft corner character */
46 #define TOPRIGHT "\u2510" /**< topright corner character */

And an ad hoc function that nicely formats an output line:

mbstrings-main.c

draw_sep: Draw multibyte strings start and end separated by a horizontal line.

void draw_sep(char const start[static 1],
char const end[static 1]) {

fputs(start , stdout);
size_t slen = mbsrlen(start , 0);
size_t elen = 90 - mbsrlen(end , 0);
for (size_t i = slen; i < elen; ++i) fputs(HBAR , stdout);
fputs(end , stdout);
fputc('\n', stdout);

}

This uses a function to count the number of print characters in a multibyte string
(mbsrlen) and our old friends fputs and fputc for textual output.

The start of all of this with the call to setlocale is important. Chances are, otherwise
you’d see garbage if you output characters from the extended set to your terminal. But once
you have issued that call to setlocale and your system is well installed, such characters
placed inside multibyte strings "fär␣ínóff" should not work out too badly.

A multibyte character is a sequence of bytes that is interpreted as representing a single
character of the extended character set, and a multibyte string is a string that contains such
multibyte characters. Luckily, these beasts are compatible with ordinary strings as we have
handled them so far.

Takeaway 2.14.3.1 Multibyte characters don’t contain null bytes.

190 2. COGNITION

Takeaway 2.14.3.2 Multibyte strings are null terminated.

Thus, many of the standard string functions such as strcpy work out of the box for
multibyte strings. They introduce one major difficulty, though: the fact that the number
of printed characters can no longer be directly deduced from the number of elements of
a char array or by the function strlen. This is why, in the previous code, we use the
(nonstandard) function mbsrlen:

mbstrings.h

mbsrlen: Interpret a mb string in mbs and return its length when interpreted as a wide
character string.

Returns: the length of the mb string or -1 if an encoding error occured.

This function can be integrated into a sequence of searches through a string, as long
as a state argument is passed to this function that is consistent with the mb character
starting in mbs. The state itself is not modified by this function.

Remarks: state of 0 indicates that mbs can be scanned without considering any
context.

size_t mbsrlen(char const*restrict mbs ,
mbstate_t const*restrict state);

As you can see from that description, parsing multibyte strings for the individual
multibyte characters can be a bit more complicated. In particular, generally we need to
keep a parsing state by means of the type mbstate_t that is provided by the C standard in
the header files wchar.h.44 This header provides utilities for multibyte strings and charac-<wchar.h>

ters, and also for a wide character type wchar_t. We will see that later.
But first, we have to introduce another international standard: ISO 10646, or Uni-

code [2017]. As the naming indicates, Unicode (http://www.joelonsoftware.com/
articles/Unicode.html) attempts to provide a unified framework for character codes.
It provides a huge table45 of basically all character concepts that have been conceived by
mankind so far. Concept here is really important: we have to understand from the print
form or glyph of a particular character in a certain type that, for example, “Latin capital
letter A” can appear as A, A, A, or A in the present text. Other such conceptual characters
like the character “Greek capital letter Alpha” may even be printed with the same or similar
glyph Α.

Unicode places each character concept, or code point in its own jargon, into a linguistic
or technical context. In addition to the definition of the character, Unicode classifies it, for
example, as being a capital letter, and relates it to other code points, such as by stating that
A is the capitalization of a.

If you need special characters for your particular language, there is a good chance
that you have them on your keyboard and that you can enter them into multibyte strings for
coding in C as is. That is, your system may be configured to insert the whole byte sequence
for ä, say, directly into the text and do all the required magic for you. If you don’t have
or want that, you can use the technique that we used for the macros HBAR earlier. There
we used an escape sequence that was new in C11 (http://dotslashzero.net/2014/
05/21/the-interesting-state-of-unicode-in-c/): a backslash and a u followed by
four hexadecimal digits encode a Unicode code point. For example, the code point for
“latin small letter a with diaeresis” is 228 or 0xE4. Inside a multibyte string, this then reads
as "\u00E4". Since four hexadecimal digits can address only 65,536 code points, there is

44The header uchar.h also provides this type.
45Today, Unicode has about 110,000 code points.

http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://dotslashzero.net/2014/05/21/the-interesting-state-of-unicode-in-c/
http://dotslashzero.net/2014/05/21/the-interesting-state-of-unicode-in-c/

14. MORE INVOLVED PROCESSING AND IO 191

also the option to specify 8 hexadecimal digits, introduced with a backslash and a capital
U, but you will encounter this only in very specialized contexts.

In the previous example, we encoded four graphical characters with such Unicode
specifications, characters that most likely are not on any keyboard. There are several online
sites that allow you to find the code point for any character you need.

If we want to do more than simple input/output with multibyte characters and strings,
things become a bit more complicated. Simple counting of the characters already is not
trivial: strlen does not give the right answer, and other string functions such as strchr,
strspn, and strstr don’t work as expected. Fortunately, the C standard gives us a set of
replacement functions, usually prefixed with wcs instead of str, that will work on wide
character strings, instead. The mbsrlen function that we introduced earlier can be coded
as

. mbstrings.c

30 size_t mbsrlen(char const*s, mbstate_t const*restrict state) {
31 if (!state) state = MBSTATE;
32 mbstate_t st = *state;
33 size_t mblen = mbsrtowcs (0, &s, 0, &st);
34 if (mblen == -1) errno = 0;
35 return mblen;
36 }

The core of this function is the use of the library function mbsrtowcs (“multibyte
string (mbs), restartable, to wide character string (wcs)”), which constitutes one of the
primitives that the C standard provides to handle multibyte strings:

1 size_t mbsrtowcs(wchar_t*restrict dst , char const** restrict src ,
2 size_t len , mbstate_t*restrict ps);

So once we decrypt the abbreviation of the name, we know that this function is supposed
to convert an mbs, src, to a wcs, dst. Here, wide characters (wc) of type wchar_t are use
to encode exactly one character of the extended character set, and these wide characters are
used to form wcs pretty much in the same way as char s compose ordinary strings: they
are null-terminated arrays of such wide characters.

The C standard doesn’t restrict the encoding used for wchar_t much, but any sane
environment nowadays should use Unicode for its internal representations. You can check
this with two macros as follows:

. mbstrings.h

24 #ifndef __STDC_ISO_10646__
25 # error "wchar_t␣wide␣characters␣have␣to␣be␣Unicode␣code␣points"
26 #endif
27 #ifdef __STDC_MB_MIGHT_NEQ_WC__
28 # error "basic␣character␣codes␣must␣agree␣on␣char␣and␣wchar_t"
29 #endif

Modern platforms typically implement wchar_t with either 16-bit or 32-bit integer
types. Which one usually should not be of much concern to you, if you only use the code
points that are representable with four hexadecimal digits in the \uXXXX notation. Those
platforms that use 16-bit effectively can’t use the other code points in \UXXXXXXXX notation,
but this shouldn’t bother you much.

192 2. COGNITION

Wide characters and wide character string literals follow analogous rules to those we
have seen for char and strings. For both, a prefix of L indicates a wide character or string:
for example, L'ä' and L'\u00E4' are the same character, both of type wchar_t, and
L"b\u00E4" is an array of three elements of type wchar_t that contains the wide char-
acters L'b', L'ä', and 0.

Classification of wide characters is also done in a similar way as for simple char. The
header wctype.h provides the necessary functions and macros.<wctype.h>

To come back to mbsrtowcs, this function parses the multibyte string src into snippets
that correspond to multibyte characters (mbc), and assigns the corresponding code point
to the wide characters in dst. The parameter len describes the maximal length that the
resulting wcs may have. The parameter state points to a variable that stores an eventual
parsing state of the mbs; we will discuss this concept briefly a bit later.

As you can see, the function mbsrtowcs has two peculiarities. First, when called with
a null pointer for dst, it simply doesn’t store the wcs but only returns the size that such a
wcs would have. Second, it can produce a coding error if the mbs is not encoded correctly.
In that case, the function returns (size_t)-1 and sets errno to the value EILSEQ (see
errno.h). Part of the code for mbsrlen is actually a repair of that error strategy by setting<errno.h>

errno to 0 again.
Let’s now look at a second function that will help us handle mbs:

mbstrings.h

mbsrdup: Interpret a sequence of bytes in s as mb string and convert it to a wide
character string.

Returns: a newly malloc’ed wide character string of the appropriate length, 0 if an
encoding error occurred.

Remarks: This function can be integrated into a sequence of such searches through
a string, as long as a state argument is passed to this function that is consistent with
the mb character starting in c. The state itself is not modified by this function.

state of 0 indicates that s can be scanned without considering any context.

wchar_t* mbsrdup(char const*s, mbstate_t const*restrict state)
;

This function returns a freshly allocated wcs with the same contents as the mbs s that
it receives on input. Other than for the state parameter, its implementation is straightfor-
ward:

. mbstrings.c

38 wchar_t* mbsrdup(char const*s, mbstate_t const*restrict state) {
39 size_t mblen = mbsrlen(s, state);
40 if (mblen == -1) return 0;
41 mbstate_t st = state ? *state : *MBSTATE;
42 wchar_t* S = malloc(sizeof(wchar_t[mblen +1]));
43 /* We know that s converts well , so no error check */
44 if (S) mbsrtowcs(S, &s, mblen+1, &st);
45 return S;
46 }

After determining the length of the target string, we use malloc to allocate space and
mbsrtowcs to copy over the data.

14. MORE INVOLVED PROCESSING AND IO 193

To have more fine-grained control over the parsing of an mbs, the standard provides
the function mbrtowc:

1 size_t mbrtowc(wchar_t*restrict pwc ,
2 const char*restrict s, size_t len ,
3 mbstate_t* restrict ps);

In this interface, parameter len denotes the maximal position in s that is scanned for a
single multibyte character. Since in general we don’t know how such a multibyte encoding
works on the target machine, we have to do some guesswork that helps us determine len.
To encapsulate such a heuristic, we cook up the following interface. It has semantics
similar to mbrtowc but avoids the specification of len:

mbstrings.h

mbrtow: Interpret a sequence of bytes in c as mb character and return that as wide
character through C.

Returns: the length of the mb character or -1 if an encoding error occured.

This function can be integrated into a sequence of such searches through a string, as
long as the same state argument passed to all calls to this or similar functions.

Remarks: state of 0 indicates that c can be scanned without considering any context.

size_t mbrtow(wchar_t*restrict C, char const c[restrict static
1],

mbstate_t*restrict state);

This function returns the number of bytes that were identified for the first multibyte
character in the string, or -1 on error. mbrtowc has another possible return value, -2, for
the case that len wasn’t big enough. The implementation uses that return value to detect
such a situation and to adjust len until it fits:

. mbstrings.c

14 size_t mbrtow(wchar_t*restrict C, char const c[restrict static
1],

15 mbstate_t*restrict state) {
16 if (!state) state = MBSTATE;
17 size_t len = -2;
18 for (size_t maxlen = MB_LEN_MAX; len == -2; maxlen *= 2)
19 len = mbrtowc(C, c, maxlen , state);
20 if (len == -1) errno = 0;
21 return len;
22 }

Here, MB_LEN_MAX is a standard value that is a good upper bound for len in most
situations.

Let us now go to a function that uses the capacity of mbrtow to identify mbc and to
use that to search inside a mbs:

194 2. COGNITION

mbstrings.h

mbsrwc: Interpret a sequence of bytes in s as mb string and search for wide character
C.

Returns: the occurrence’th position in s that starts a mb sequence corresponding to
C or 0 if an encoding error occurred.

If the number of occurrences is less than occurrence the last such position is returned.
So in particular using SIZE_MAX (or -1) will always return the last occurrence.

Remarks: This function can be integrated into a sequence of such searches through a
string, as long as the same state argument passed to all calls to this or similar functions
and as long as the continuation of the search starts at the position that is returned by
this function.

state of 0 indicates that s can be scanned without considering any context.

char const* mbsrwc(char const s[restrict static 1],
mbstate_t*restrict state ,
wchar_t C, size_t occurrence);

. mbstrings.c

68 char const* mbsrwc(char const s[restrict static 1], mbstate_t*
restrict state ,

69 wchar_t C, size_t occurrence) {
70 if (!C || C == WEOF) return 0;
71 if (!state) state = MBSTATE;
72 char const* ret = 0;
73
74 mbstate_t st = *state;
75 for (size_t len = 0; s[0]; s += len) {
76 mbstate_t backup = st;
77 wchar_t S = 0;
78 len = mbrtow (&S, s, &st);
79 if (!S) break;
80 if (C == S) {
81 *state = backup;
82 ret = s;
83 if (! occurrence) break;
84 --occurrence;
85 }
86 }
87 return ret;
88 }

As we said, all of this encoding with multibyte strings and simple IO works fine if we
have an environment that is consistent: that is, if it uses the same multibyte encoding within
your source code as for other text files and on your terminal. Unfortunately, not all envi-
ronments use the same encoding yet, so you may encounter difficulties when transferring
text files (including sources) or executables from one environment to another. In addition
to the definition of the big character table, Unicode also defines three encodings that are
now widely used and that hopefully will replace all others eventually: UTF-8, UTF-16,
and UTF-32, for Unicode Transformation Format with 8-bit, 16-bit, and 32-bit words,

14. MORE INVOLVED PROCESSING AND IO 195

respectively. Since C11, the C language includes rudimentary direct support for these en-
codings without having to rely on the locale. String literals with these encodings can be
coded as u8"text", u"text", and U"text", which have types char[], char16_t[], and
char32_t[], respectively.

Chances are that the multibyte encoding on a modern platform is UTF-8, and then you
won’t need these special literals and types. They are mostly useful in a context where you
have to ensure one of these encodings, such as in network communication. Life on legacy
platforms might be more difficult; see http://www.nubaria.com/en/blog/?p=289 for
an overview for the Windows platform.

14.4. Binary streams. In subsection 8.3, we briefly mentioned that input and output
to streams can also be performed in binary mode in contrast to the usual text mode we have
used up to now. To see the difference, remember that text mode IO doesn’t write the bytes
that we pass to printf or fputs one-to-one to the target file or device:

• Depending on the target platform, a '\n' character can be encoded as one or
several characters.

• Spaces that precede a newline can be suppressed.
• Multibyte characters can be transcribed from the execution character set (the pro-

gram’s internal representation) to the character set of the file system underlying
the file.

Similar observations hold for reading data from text files.
If the data that we manipulate is effectively human-readable text, all of this is fine;

we can consider ourselves happy that the IO functions together with setlocale make this
mechanism as transparent as possible. But if we are interested in reading or writing binary
data just as it is present in some C objects, this can be quite a burden and lead to serious
difficulties. In particular, binary data could implicitly map to the end-of-line convention of
the file, and thus a write of such data could change the file’s internal structure.

As indicated previously, streams can be opened in binary mode. For such a stream, all
the translation between the external representation in the file and the internal representation
is skipped, and each byte of such a stream is written or read as such. From the interfaces
we have seen up to now, only fgetc and fputc can handle binary files portably. All others
may rely on some form of end-of-line transformation.

To read and write binary streams more easily, the C library has some interfaces that
are better suited:

1 size_t fread(void* restrict ptr , size_t size , size_t nmemb ,
2 FILE* restrict stream);
3 size_t fwrite(void const*restrict ptr , size_t size , size_t nmemb ,
4 FILE* restrict stream);
5 int fseek(FILE* stream , long int offset , int whence);
6 long int ftell(FILE* stream);

The use of fread and fwrite is relatively straightforward. Each stream has a cur-
rent file position for reading and writing. If successful, these two functions read or write
size*nmemb bytes from that position onward and then update the file position to the new
value. The return value of both functions is the number of bytes that have been read or
written, usually size*nmemb, and thus an error occurred if the return value is less than
that.

The functions ftell and fseek can be used to operate on that file position: ftell
returns the position in terms of bytes from the start of the file, and fseek positions the
file according to the arguments offset and whence. Here, whence can have one of these

http://www.nubaria.com/en/blog/?p=289

196 2. COGNITION

values: SEEK_SET refers to the start of the file, and SEEK_CUR to the current file position
before the call.46

By means of these four functions, we may effectively move forward and backward in
a stream that represents a file and read or write any byte of it. This can, for example, be
used to write out a large object in its internal representation to a file and read it in later with
a different program, without performing any modifications.

This interface has some restrictions, though. To work portably, streams have to be
opened in binary mode. On some platforms, IO is always binary, because there is no
effective transformation to perform. So, unfortunately, a program that does not use binary
mode may work reliably on these platforms, but then fail when ported to others.

Takeaway 2.14.4.1 Open streams on which you use fread or fwrite in binary mode.

Since this works with internal representations of objects, it is only portable between
platforms and program executions that use that same representation: the same endian-ness.
Different platforms, operating systems, and even program executions can have different
representations.

Takeaway 2.14.4.2 Files that are written in binary mode are not portable between plat-
forms.

The use of the type long for file positions limits the size of files that can easily be
handled with ftell and fseek to LONG_MAX bytes. On most modern platforms, this corre-
sponds to 2GiB.[Exs 47]

Takeaway 2.14.4.3 fseek and ftell are not suitable for very large file offsets.

14.5. Error checking and cleanup. C programs can encounter a lot of error condi-
tions. Errors can be programming errors, bugs in the compiler or OS software, hardware
errors, in some cases resource exhaustion (such as out of memory), or any malicious com-
bination of these. For a program to be reliable, we have to detect such error conditions and
deal with them gracefully.

As a first example, take the following description of a function fprintnumbers, which
continues the series of functions that we discussed in subsection 14.1:

46There is also SEEK_END for the end-of-file position, but it may have platform-defined glitches.
[Exs 47]Write a function fseekmax that uses intmax_t instead of long and achieves large seek values by combining

calls to fseek.

14. MORE INVOLVED PROCESSING AND IO 197

numberline.c

fprintnumbers: print a series of numbers nums on stream, using printf format form,
separated by sep characters and terminated with a newline character.

Returns: the number of characters printed to stream, or a negative error value on
error.

If len is 0, an empty line is printed and 1 is returned.

Possible error returns are:

• EOF (which is negative) if stream was not ready to be written to
• -EOVERFLOW if more than INT_MAX characters would have to be written, in-

cluding the case that len is greater than INT_MAX.
• -EFAULT if stream or numb are 0
• -ENOMEM if a memory error occurred

This function leaves errno to the same value as occurred on entry.

int fprintnumbers(FILE*restrict stream ,
char const form[restrict static 1],
char const sep[restrict static 1],
size_t len , size_t numb[restrict len]);

As you can see, this function distinguishes four different error conditions, which are
indicated by the return of negative constant values. The macros for these values are gen-
erally provided by the platform in errno.h, and all start with the capital letter E. Un- <errno.h>

fortunately, the C standard imposes only EOF (which is negative) and EDOM, EILSEQ, and
ERANGE, which are positive. Other values may or may not be provided. Therefore, in the
initial part of our code, we have a sequence of preprocessor statements that give default
values for those that are missing:

. numberline.c

36 #include <limits.h>
37 #include <errno.h>
38 #ifndef EFAULT
39 # define EFAULT EDOM
40 #endif
41 #ifndef EOVERFLOW
42 # define EOVERFLOW (EFAULT-EOF)
43 # if EOVERFLOW > INT_MAX
44 # error EOVERFLOW constant is too large
45 # endif
46 #endif
47 #ifndef ENOMEM
48 # define ENOMEM (EOVERFLOW+EFAULT-EOF)
49 # if ENOMEM > INT_MAX
50 # error ENOMEM constant is too large
51 # endif
52 #endif

The idea is that we want to be sure to have distinct values for all of these macros. Now
the implementation of the function itself looks as follows:

198 2. COGNITION

. numberline.c

169 int fprintnumbers(FILE*restrict stream ,
170 char const form[restrict static 1],
171 char const sep[restrict static 1],
172 size_t len , size_t nums[restrict len]) {
173 if (! stream) return -EFAULT;
174 if (len && !nums) return -EFAULT;
175 if (len > INT_MAX) return -EOVERFLOW;
176
177 size_t tot = (len ? len : 1)*strlen(sep);
178 int err = errno;
179 char* buf = 0;
180
181 if (len) {
182 /* Count the chars for the numbers. */
183 for (size_t i = 0; i < len; ++i)
184 tot += snprintf(0, 0, form , nums[i]);
185 /* We return int so we have to constrain the max size. */
186 if (tot > INT_MAX) return error_cleanup(EOVERFLOW , err);
187 }
188
189 buf = malloc(tot+1);
190 if (!buf) return error_cleanup(ENOMEM , err);
191
192 sprintnumbers(tot , buf , form , sep , len , nums);
193 /* print whole line in one go */
194 if (fputs(buf , stream) == EOF) tot = EOF;
195 free(buf);
196 return tot;
197 }

Error handling pretty much dominates the coding effort for the whole function. The
first three lines handle errors that occur on entry to the function and reflect missed pre-
conditions or, in the language of Annex K (see subsection 8.1.4), runtime constraint
violationsC .

Dynamic runtime errors are a bit more difficult to handle. In particular, some functions
in the C library may use the pseudo-variable errno to communicate an error condition.
If we want to capture and repair all errors, we have to avoid any change to the global
state of the execution, including to errno. This is done by saving the current value on
entry to the function and restoring it in case of an error with a call to the small function
error_cleanup:

. numberline.c

144 static inline int error_cleanup(int err , int prev) {
145 errno = prev;
146 return -err;
147 }

The core of the function computes the total number of bytes that should be printed in
a for loop over the input array. In the body of the loop, snprintf with two 0 arguments
is used to compute the size for each number. Then our function sprintnumbers from
subsection 14.1 is used to produce a big string that is printed using fputs.

14. MORE INVOLVED PROCESSING AND IO 199

Observe that there is no error exit after a successful call to malloc. If an error is
detected on return from the call to fputs, the information is stored in the variable tot, but
the call to free is not skipped. So even if such an output error occurs, no allocated memory
is left leaking. Here, taking care of a possible IO error was relatively simple because the
call to fputs occurred close to the call to free.

The function fprintnumbers_opt requires more care:

. numberline.c

199 int fprintnumbers_opt(FILE*restrict stream ,
200 char const form[restrict static 1],
201 char const sep[restrict static 1],
202 size_t len , size_t nums[restrict len]) {
203 if (! stream) return -EFAULT;
204 if (len && !nums) return -EFAULT;
205 if (len > INT_MAX) return -EOVERFLOW;
206
207 int err = errno;
208 size_t const seplen = strlen(sep);
209
210 size_t tot = 0;
211 size_t mtot = len*(seplen +10);
212 char* buf = malloc(mtot);
213
214 if (!buf) return error_cleanup(ENOMEM , err);
215
216 for (size_t i = 0; i < len; ++i) {
217 tot += sprintf (&buf[tot], form , nums[i]);
218 ++i;
219 if (i >= len) break;
220 if (tot > mtot-20) {
221 mtot *= 2;
222 char* nbuf = realloc(buf , mtot);
223 if (buf) {
224 buf = nbuf;
225 } else {
226 tot = error_cleanup(ENOMEM , err);
227 goto CLEANUP;
228 }
229 }
230 memcpy (&buf[tot], sep , seplen);
231 tot += seplen;
232 if (tot > INT_MAX) {
233 tot = error_cleanup(EOVERFLOW , err);
234 goto CLEANUP;
235 }
236 }
237 buf[tot] = 0;
238
239 /* print whole line in one go */
240 if (fputs(buf , stream) == EOF) tot = EOF;
241 CLEANUP:
242 free(buf);
243 return tot;
244 }

It tries to optimize the procedure even further by printing the numbers immediately
instead of counting the required bytes first. This may encounter more error conditions as

200 2. COGNITION

we go, and we have to take care of them by guaranteeing to issue a call to free at the end.
The first such condition is that the buffer we allocated initially is too small. If the call to
realloc to enlarge it fails, we have to retreat carefully. The same is true if we encounter
the unlikely condition that the total length of the string exceeds INT_MAX.

In both cases, the function uses goto, to jump to the cleanup code that then calls free.
With C, this is a well-established technique that ensures that the cleanup takes place and
that also avoids hard-to-read nested if-else conditions. The rules for goto are relatively
simple:

Takeaway 2.14.5.1 Labels for goto are visible in the entire function that contains them.

Takeaway 2.14.5.2 goto can only jump to a label inside the same function.

Takeaway 2.14.5.3 goto should not jump over variable initializations.

The use of goto and similar jumps in programming languages has been subject to
intensive debate, starting from an article by Dijkstra [1968]. You will still find people
who seriously object to code as it is given here, but let us try to be pragmatic about that:
code with or without goto can be ugly and hard to follow. The main idea is to have the
“normal” control flow of the function be mainly undisturbed and to clearly mark changes to
the control flow that only occur under exceptional circumstances with a goto or return.
Later, in subsection 17.5, we will see another tool in C that allows even more drastic
changes to the control flow: setjmp/longjmp, which enables us to jump to other positions
on the stack of calling functions.

Summary

• The C library has several interfaces for text processing, but we must be careful
about const-qualification and buffer overflow.

• Formatted input with scanf (and similar) has subtle issues with pointer types,
null termination of strings, white space, and new-line separation. If possible, you
should use the combination of fgets with strtod or similar, more specialized,
functions.

• Extended character sets are best handled by using multibyte strings. With some
caution, these can be used much like ordinary strings for input and output.

• Binary data should be written to binary files by using fwrite and fread. Such
files are platform dependent.

• Calls to C library functions should be checked for error returns.
• Handling error conditions can lead to complicated case analysis. It can be orga-

nized by a function-specific code block to which we jump with goto statements.

CHALLENGE 16 (Text processing in streams). For text processing in streams, can you read
on stdin, dump modified text on stdout, and report diagnostics on stderr? Count the
occurrences of a list of words? Count the occurrences of a regexp? Replace all occurrences
of a word with another?

SUMMARY 201

CHALLENGE 17 (Text processor sophistication). Can you extend your text processor
(challenge 12) to use multibyte characters?
Can you also extend it to do regular expression processing, such as searching for a word,
running a simple query-replace of one word against another, performing a query-replace
with a regex against a specific word, and applying regexp grouping?

LEVEL 3

Experience

The alpine chough lives and breeds in the thin air of high altitudes and
has been seen above 8000 m in the Himalayas.

In this level, we go more deeply into details about specific topics. The first, per-
formance, is one of the primary reasons C is chosen over other programming languages.
Therefore, section 15 is a mandatory read for all C software designers.

The second topic is a feature that is quite specific to C: function-like macros. Because
of their complexity and obvious ugliness, they are much frowned upon by other program-
ming communities. Nevertheless, it is important to master them to a certain extent, because
they allow us to provide easy-to-use interfaces: for example, for type-generic programming
and more sophisticated parameter checking.

Sections 17 and 18 then show how the usual assumption of sequential program exe-
cution can be weakened to allow for asynchronous problem handling (with long jumps or
signal handlers) or the parallel execution of threads. These come with specific problems
related to guaranteeing data consistency, so we conclude with section 19, which dives more
deeply into the handling of atomic data and synchronization in general.

15. Performance

This section covers
• Writing inline functions
• Restricting pointers
• Measuring and inspecting performance

Once you feel more comfortable when coding in C, you will perhaps be tempted to do
complicated things to “optimize” your code. Whatever you think you are optimizing, there
is a good chance you will get it wrong: premature optimization can do a great deal of harm
in terms of readability, soundness, maintainability, and so on.
Knuth [1974] coined the following phrase that should be your motto for this whole level:

Takeaway D Premature optimization is the root of all evil.

Its good performance is often cited as one of the main reasons C is used so widely.
While there is some truth to the idea that many C programs outperform code of similar
complexity written in other programming languages, this aspect of C may come with a
substantial cost, especially concerning safety. This is because C, in many places, doesn’t
enforce rules, but places the burden of verifying them on the programmer. Important ex-
amples for such cases are

• Out-of-bounds access of arrays
• Accessing uninitialized objects
• Accessing objects after their lifetime has ended
• Integer overflow

203

204 3. EXPERIENCE

These can result in program crashes, loss of data, incorrect results, exposure of sensitive
information, and even loss of money or lives.

Takeaway 3.15.0.1 Do not trade off safety for performance.

C compilers have become much better in recent years; basically, they complain about
all problems that are detectable at compile time. But severe problems in code can still
remain undetected in code that tries to be clever. Many of these problems are avoidable, or
at least detectable, by very simple means:

• All block-scope variables should be initialized, thereby eliminating half the prob-
lems with uninitialized objects.

• Dynamical allocation should be done with calloc instead of malloc wherever
that is suitable. This avoids another quarter of the problems with uninitialized
objects.

• A specific initialization function should be implemented for more-complicated
data structures that are allocated dynamically. That eliminates the rest of the
problems with uninitialized objects.

• Functions that receive pointers should use array syntax and distinguish different
cases:

– A pointer to a single object of the type – These functions should use the
static 1 notation and thus indicate that they expect a pointer that is non-
null:

void func(double a[static 1]);

– A pointer to a collection of objects of known number – These functions
should use the static N notation and thus indicate that they expect a pointer
that points to at least that number of elements:

void func(double a[static 7]);

– A pointer to a collection of objects of unknown number – These functions
should use the VLA notation:

void func(size_t n, double a[n]);

– A pointer to a single object of the type or a null pointer – Such a func-
tion must guarantee that even when it receives a null pointer, the execution
remains in a defined state:

void func(double* a);

Compiler builders only start to implement checks for these cases, so your com-
piler probably will not yet detect such errors. Nevertheless, writing these down
and make them clear for yourself will help you to avoid out-of-bounds errors.

• Taking addresses of block-scope (local) variables should be avoided, if possi-
ble. Therefore, it is good practice to mark all variables in complex code with
register.

• Use unsigned integer types for loop indices, and handle wrap-around explicitly.
The latter can, for example, be achieved by comparing the loop variable to the
maximum value of the type before the increment operation.

15. PERFORMANCE 205

Despite what some urban myths suggest, applying these rules usually will not negatively
impact the performance of your code.

Takeaway 3.15.0.2 Optimizers are clever enough to eliminate unused initializations.

Takeaway 3.15.0.3 The different notations of pointer arguments to functions result in
the same binary code.

Takeaway 3.15.0.4 Not taking addresses of local variables helps the optimizer because
it inhibits aliasing.

Once we have applied these rules and have ensured that our implementation is safe,
we may have a look at the performance of the program. What constitutes good perfor-
mance and how we measure it is a difficult subject by itself. A first question concerning
performance should always be relevance: for example, improving the runtime of an inter-
active program from 1 ms to 0.9 ms usually makes no sense at all, and any effort spent
making such an improvement is probably better invested elsewhere. To equip us with the
necessary tools to assess performance bottlenecks, we will discuss how to measure perfor-
mance (subsection 15.3). This discussion comes at the end of this section because before
we can fully understand measuring performance, we have to better understand the tools for
making performance improvements.

There are many situations in which we can help our compiler (and future versions of it)
to optimize code better, because we can specify certain properties of our code that it can’t
deduce automatically. C introduces keywords for this purpose that are quite special in
the sense that they constrain not the compiler but the programmer. They all have the
property that removing them from valid code where they are present should not change
the semantics. Because of that property, they are sometimes presented as useless or even
obsolete features. Be careful when you encounter such statements: people who make such
claims tend not to have a deep understanding of C, its memory model, or its optimization
possibilities. And, in particular, they don’t seem to have a deep understanding of cause and
effect, either.

The keywords that introduce these optimization opportunities are register (C90),
inline, restrict (both from C99), and alignas (respectively _Alignas, C11). As indi-
cated, all four have the property that they could be omitted from a valid program without
changing its semantics.

In subsection 13.2, we spoken to some extent about register, so we will not go into
more detail than that. Just remember that it can help to avoid aliasing between objects that
are defined locally in a function. As stated there, I think this is a feature that is much un-
derestimated in the C community. I have even proposed ideas to the C committee (Gustedt
[2016]) about how this feature could be at the heart of a future improvement of C that would
include global constants of any object type and even more optimization opportunities for
small pure functions.

In subsection 12.7, we also discussed C11’s alignas and the related alignof. They
can help to position objects on cache boundaries and thus improve memory access. We
will not go into more detail about this specialized feature.

The remaining two features, C99’s inline (subsection 15.1) and restrict (subsec-
tion 15.2), have very different usability. The first is relatively easy to use and presents no
danger. It is a tool that is quite widely used and may ensure that the code for short functions
can be directly integrated and optimized at the caller side of the function.

The latter, restrict, relaxes the type-based aliasing considerations to allow for better
optimization. Thus it is subtle to use and can do considerable harm if used badly. It is often
found in library interfaces, but much less in user code.

206 3. EXPERIENCE

The remainder of this section (subsection 15.3) dives into performance measurement
and code inspection, to enables us to asses performance by itself and the reasons that lead
to good or bad performance.

15.1. Inline functions. For C programs, the standard tool to write modular code is
functions. As we have seen, they have several advantages:

• They clearly separate interface and implementation. Thereby they allow us to
improve code incrementally, from revision to revision, or to rewrite functionality
from scratch if deemed necessary.

• If we avoid communicating with the rest of the code via global variables, we
ensure that the state a function accesses is local. That way, the state is present
in the parameters of the call and local variables only. Optimization opportunities
may thus be detected much more easily.

Unfortunately, functions also have some downsides from a performance point of view:
• Even on modern platforms, a function call has a certain overhead. Usually, when

calling a function, some stack space is put aside, and local variables are initial-
ized or copied. Control flow jumps to a different point in the executable, which
might or might not be in the execution cache.

• Depending on the calling convention of the platform, if the return value of a
function is a struct, the whole return value may have to be copied where the
caller of the function expects the result.

If, by coincidence, the code of the caller (say, fcaller) and the callee (say, fsmall)
are present inside the same translation unit (TU), a good compiler may avoid these down-
sides by inlining. Here, the compiler does something equivalent to replacing the call to
fsmall with the code of fsmall itself. Then there is no call, and so there is no call over-
head.

Even better, since the code of fsmall is now inlined, all instructions of fsmall are
seen in that new context. The compiler can detect, for example,

• Dead branches that are never executed
• Repeated computation of an expression where the result is already known
• That the function (as called) may only return a certain type of value

Takeaway 3.15.1.1 Inlining can open up a lot of optimization opportunities.

A traditional C compiler can only inline functions for which it also knows the defini-
tion: only knowing the declaration is not enough. Therefore, programmers and compiler
builders have studied the possibilities to increase inlining by making function definitions
visible. Without additional support from the language, there are two strategies to do so:

• Concatenate all code of a project into a single large file, and then compile all
that code in one giant TU. Doing such a thing systematically is not as easy as it
sounds: we have to ensure that the concatenation order of the source files doesn’t
produce definition cycles and that we don’t have naming conflicts (for example,
two TUs, each with a static function init).

• Functions that should be inlined are placed in header files and then included by
all TUs that need them. To avoid the multiple definitions of the function symbol
in each TU, such functions must be declared static.

Where the first approach is infeasible for large projects, the second approach is rela-
tively easy to put in place. Nevertheless, it has drawbacks:

• If the function is too big to be inlined by the compiler, it is instantiated separately
in every TU. That is, a function that big will potentially have a lot of copies and
increase the size of the final executable.

15. PERFORMANCE 207

• Taking a pointer of such a function will give the address of the particular instance
in the current TU. Comparison of two such pointers that have been obtained in
different TUs will not compare as equal.

• If such a static function that is declared in a header file is not used in a TU, the
compiler will usually warn about that non-use. So if we have a lot of such small
functions in header files, we will see a lot of warnings, producing a lot of false
alarms.

To avoid these drawbacks, C99 has introduced the inline keyword. Unlike what the
naming might suggest, this does not force a function to be inlined, but only provides a way
that it may be.

• A function definition that is declared with inline can be used in several TUs
without causing a multiple-symbol-definition error.

• All pointers to the same inline function will compare as equal, even if obtained
in different TUs.

• An inline function that is not used in a specific TU will be completely absent
from the binary of that TU and, in particular, will not contribute to its size.

The latter point is generally an advantage, but it has one simple problem: no symbol
for the function would ever be emitted, even for programs that might need such a symbol.
There are several common situations in which a symbol is needed:

• The program directly uses or stores a pointer to the function.
• The compiler decides that the function is too big or too complicated to inline.

This situation varies and depends on several factors:
– The optimization level that is used for the compilation
– Whether debugging options are on or off
– The use of certain C library function by the function itself

• The function is part of a library that is shipped and linked with unknown pro-
grams.

To provide such a symbol, C99 has introduced a special rule for inline functions.

Takeaway 3.15.1.2 Adding a compatible declaration without the inline keyword en-
sures the emission of the function symbol in the current TU.

As an example, suppose we have an inline function like this in a header file: say
toto.h:

1 // Inline definition in a header file.
2 // Function argument names and local variables are visible
3 // to the preprocessor and must be handled with care.
4 inline
5 toto* toto_init(toto* toto_x){
6 if (toto_x) {
7 *toto_x = (toto){ 0 };
8 }
9 return toto_x;

10 }

Such a function is a perfect candidate for inlining. It is really small, and the initialization
of any variable of type toto is probably best made in place. The call overhead is of the
same order as the inner part of the function, and in many cases the caller of the function
may even omit the test for the if.

Takeaway 3.15.1.3 An inline function definition is visible in all TUs.

208 3. EXPERIENCE

This function may be inlined by the compiler in all TUs that see this code, but none of
them would effectively emit the symbol toto_init. But we can (and should) enforce the
emission in one TU, toto.c, say, by adding a line like the following:

1 #include "toto.h"
2
3 // Instantiate in exactly one TU.
4 // The parameter name is omitted to avoid macro replacement.
5 toto* toto_init(toto*);

Takeaway 3.15.1.4 An inline definition goes in a header file.

Takeaway 3.15.1.5 An additional declaration without inline goes in exactly one TU.

As we said, that mechanism of inline functions is there to help the compiler make the
decision whether to effectively inline a function. In most cases, the heuristics that compiler
builders have implemented to make that decision are completely appropriate, and you can’t
do better. They know the particular platform for which the compilation is done much better
than you: maybe this platform didn’t even exist when you wrote your code. So they are in
a much better position to compare the trade-offs between the different possibilities.

An important family of functions that may benefit from inline definitions is pure
functions, which we met in subsection 10.2.2. If we look at the example of the rat structure
(listing 10.1), we see that all the functions implicitly copy the function arguments and the
return value. If we rewrite all these functions as inline in the header file, all these copies
can be avoided using an optimizing compiler.[Exs 1] [Exs 2]

So inline functions can be a precious tool to build portable code that shows good per-
formance; we just help the compiler(s) to make the appropriate decision. Unfortunately,
using inline functions also has drawbacks that should be taken into account for our de-
sign.

First, 3.15.1.3 implies that any change you make to an inline function will trigger a
complete rebuild of your project and all of its users.

Takeaway 3.15.1.6 Only expose functions as inline if you consider them to be stable.

Second, the global visibility of the function definition also has the effect that local
identifiers of the function (parameters or local variables) may be subject to macro expan-
sion for macros that we don’t even know about. In the example, we used the toto_ prefix
to protect the function parameters from expansion by macros from other include files.

Takeaway 3.15.1.7 All identifiers that are local to an inline function should be pro-
tected by a convenient naming convention.

Third, other than conventional function definitions, inline functions have no partic-
ular TU with which they are associated. Whereas a conventional function can access state
and functions that are local to the TU (static variables and functions), for an inline
function, it would not be clear which copy of which TU these refer to.

Takeaway 3.15.1.8 inline functions can’t access identifiers of static functions.

Takeaway 3.15.1.9 inline functions can’t define or access identifiers of modifiable
static objects.

Here, the emphasis is on the fact that access is restricted to the identifiers and not the
objects or functions themselves. There is no problem with passing a pointer to a static
object or a function to an inline function.

[Exs 1]Rewrite the examples from subsection 10.2.2 with inline.
[Exs 2]Revisit the function examples in subsection 7, and argue for each of them whether they should be defined
inline.

15. PERFORMANCE 209

15.2. Using restrict qualifiers. We have seen many examples of C library functions
that use the keyword restrict to qualify pointers, and we also have used this qualification
for our own functions. The basic idea of restrict is relatively simple: it tells the compiler
that the pointer in question is the only access to the object it points to. Thus the compiler
can make the assumption that changes to the object can only occur through that same
pointer, and the object cannot change inadvertently. In other words, with restrict, we
are telling the compiler that the object does not alias any other object the compiler handles
in this part of the code.

Takeaway 3.15.2.1 A restrict-qualified pointer has to provide exclusive access.

As is often the case in C, such a declaration places the burden of verifying this property
on the caller.

Takeaway 3.15.2.2 A restrict-qualification constrains the caller of a function.

Consider, for example, the differences between memcpy and memmove:

1 void* memcpy(void*restrict s1, void const*restrict s2, size_t n);
2 void* memmove(void* s1, const void* s2, size_t n);

For memcpy, both pointers are restrict-qualified. So for the execution of this func-
tion, the access through both pointers has to be exclusive. Not only that, s1 and s2 must
have different values, and neither of them can provide access to parts of the object of the
other. In other words, the two objects that memcpy “sees” through the two pointers must
not overlap. Assuming this can help to optimize the function.

In contrast, memmove does not make such an assumption. So s1 and s2 may be equal,
or the objects may overlap. The function must be able to cope with that situation. Therefore
it might be less efficient, but it is more general.

We saw in subsection 12.3 that it might be important for the compiler to decide
whether two pointers may in fact point to the same object (aliasing). Pointers to differ-
ent base types are not supposed to alias, unless one of them is a character type. So both
parameters of fputs are declared with restrict

1 int fputs(const char *restrict s, FILE *restrict stream);

although it might seem very unlikely that anyone might call fputs with the same pointer
value for both parameters.

This specification is more important for functions like printf and friends:

1 int printf(const char *restrict format , ...);
2 int fprintf(FILE *restrict stream , const char *restrict format ,

...);

The format parameter shouldn’t alias any of the arguments that might be passed to the ...
part. For example, the following code has undefined behavior:

1 char const* format = "format␣printing␣itself:␣%s\n";
2 printf(format , format); // Restrict violation

This example will probably still do what you think it does. If you abuse the stream pa-
rameter, your program might explode:

1 char const* format = "First␣two␣bytes␣in␣stdin␣object:␣%.2s\n";
2 char const* bytes = (char*)stdin; // Legal cast to char
3 fprintf(stdin , format , bytes); // Restrict violation

210 3. EXPERIENCE

Sure, code like this is not very likely to occur in real life. But keep in mind that
character types have special rules concerning aliasing, and therefore all string-processing
functions may be subject to missed optimization. You could add restrict-qualifications
in many places where string parameters are involved, and which you know are accessed
exclusively through the pointer in question.

15.3. Measurement and inspection. We have several times spoken about the perfor-
mance of programs without yet talking about methods to assess it. And indeed, we humans
are notoriously bad at predicting the performance of code. So, our prime directive for
questions concerning performance should be:

Takeaway E Don’t speculate about the performance of code; verify it rigorously.

The first step when we dive into a code project that may be performance-critical will
always be to choose the best algorithms that solve the problem(s) at hand. This should
be done even before coding starts, so we have to make a first complexity assessment by
arguing (but not speculating!) about the behavior of such an algorithm.

Takeaway 3.15.3.1 Complexity assessment of algorithms requires proofs.

Unfortunately, a discussion of complexity proofs is far beyond the scope of this book,
so we will not be able to go into it. But, fortunately, many other books have been writ-
ten about it. The interested reader may refer to the textbook of Cormen et al. [2001] or
to Knuth’s treasure trove.

Takeaway 3.15.3.2 Performance assessment of code requires measurement.

Measurement in experimental sciences is a difficult subject, and obviously we can’t
tackle it here in full detail. But we should first be aware that the act of measuring modifies
the observed. This holds in physics, where measuring the mass of an object necessarily
displaces it; in biology, where collecting samples of species actually kills animals or plants;
and in sociology, where asking for gender or immigration background before a test changes
the behavior of the test subjects. Not surprisingly it also holds in computer science and, in
particular, for time measurement, since all such time measurements need time themselves
to be accomplished.

Takeaway 3.15.3.3 All measurements introduce bias.

At the worst, the impact of time measurements can go beyond the additional time
spent making the measurement. In the first place, a call to timespec_get, for example,
is a call to a function that wouldn’t be there if we didn’t measure. The compiler has to
take some precautions before any such call, in particular saving hardware registers, and
has to drop some assumptions about the state of the execution. So time measurement can
suppress optimization opportunities. Also, such a function call usually translates into a
system call (a call into the operating system), and this can have effects on many properties
of the program execution, such as on the process or task scheduling, or can invalidate data
caches.

Takeaway 3.15.3.4 Instrumentation changes compile-time and runtime properties.

The art of experimental sciences is to address these issues and to ensure that the bias
introduced by the measurement is small and so the result of an experiment can be assessed
qualitatively. Concretely, before we can do any time measurements on code that interests
us, we have to assess the bias that time measurements themselves introduce. A general

15. PERFORMANCE 211

strategy to reduce the bias of measurement is to repeat an experiment several times and
collect statistics about the outcomes. Most commonly used statistics in this context are
simple. They concern the number of experiments and their mean value µ (or average), and
also their standard deviation and sometimes their skew.

Let us look at the following sample S that consists of 20 timings, in seconds s:
0.7, 1.0, 1.2, 0.6, 1.3, 0.1, 0.8, 0.3, 0.4, 0.9, 0.5, 0.2, 0.6, 0.4, 0.4, 0.5, 0.5, 0.4, 0.6, 0.6

See figure 15.1 for a frequency histogram of this sample. The values show quite a variation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

M
ea

n
Standard deviation

Sa
m

pl
es

Seconds

FIGURE 15.1. Frequency histogram for our sample, showing the fre-
quency with which each of the measured values was obtained

around 0.6 (µ(S), mean value), from 0.1 (minimum) to 1.3 (maximum). In fact, this
variation is so important that I personally would not dare to claim much about the relevance
of such a sample. These fictive measurements are bad, but how bad are they?

The standard deviation σ(S) measures (again, in seconds) how an observed sample
deviates from an ideal world where all timings have exactly the same result. A small stan-
dard deviation indicates that there is a good chance the phenomenon that we are observing
follows that ideal. Conversely, if the standard deviation is too high, the phenomenon may
not have that ideal property (there is something that perturbs our computation), or our
measurements might by unreliable (there is something that perturbs our measurement), or
both.

For our example, the standard deviation is 0.31, which is substantial compared to the
mean value of 0.6: the relative standard deviation σ(S)/µ(S) here is 0.52 (or 52%). Only
a value in a low percentage range can be considered good.

Takeaway 3.15.3.5 The relative standard deviation of run times must be in a low per-
centage range.

The last statistical quantity that we might be interested in is the skew (0.79 for our
sample S). It measures the lopsidedness (or asymmetry) of the sample. A sample that is
distributed symmetrically around the mean would have a skew of 0, and a positive value
indicates that there is a “tail” to the right. Time measurements usually are not symmetric.
We can easily see that in our sample: the maximum value 1.3 is at distance 0.7 from the
mean. So for the sample to be symmetric around the mean of 0.6, we would need one
value of -0.1, which is not possible.

If you are not familiar with these very basic statistical concepts, you should probably
revisit them a bit, now. In this section, we will see that all these statistical quantities that

212 3. EXPERIENCE

interest us can be computed with the raw moments:

mk(S) =
∑

for all s ∈ S
sk

So, the zeroth raw moment counts the number of samples, the first adds up the total number
of values, the second is the sum of the squares of the values, and so on.

For computer science, the repetition of an experiment can easily be automated by
putting the code that is to be sampled inside a for loop and placing the measurements
before and after this loop. Thereby, we can execute the sample code thousands or mil-
lions of times and compute the average time spent for a loop iteration. The hope then is
that the time measurement can be neglected because the overall time spent in the experi-
ment is maybe several seconds, whereas the time measurement itself may take just several
milliseconds.

In this section’s example code, we will try to assess the performance of calls to
timespec_get and also of a small utility that collects statistics of measurements. List-
ing 15.1 contains several for loops around different versions of code that we want to
investigate. The time measurements are collected in a statistic and use a tv_nsec value
obtained from timespec_get. In this approach, the experimental bias that we introduce is
obvious: we use a call to timespec_get to measure its own performance. But this bias is
easily mastered: augmenting the number of iterations reduces the bias. The experiments
that we report here were performed with a value of iterations of 224 − 1.

But this mostly trivial observation is not the goal; it only serves as an example of
some code that we want to measure. The for loops in listing 15.1 contain code that does
the statistics collection with more sophistication. The goal is to be able to assert, step by
step, how this increasing sophistication influences the timing.

. timespec.c

struct timespec tdummy;
stats sdummy [4] = { 0 };

The loop starting on line 70 just accumulates the values, so we may determine their av-
erage. The next loop (line 77) uses a function stats_collect1 that maintains a running
mean: that is, it implements a formula that computes a new average µn by modifying the
previous one by δ(xn, µn−1), where xn is the new measurement and µn−1 is the previous
average. The other two loops (lines 82 and 87) then use the functions stats_collect2 and
stats_collect3, respectively, which use similar formulas for the second and third mo-
ment, respectively, to compute variance and skew. We will discuss these functions shortly.

But first, let us have a look at the tools we use for the instrumentation of the code.
We use timespec_diff from subsection 11.2 to compute the time difference be-

tween two measurements and stats_collect2 to sum up the statistics. The whole is
then wrapped in another loop (not shown) that repeats that experiment 10 times. After
finishing that loop, we use functions for the stats type to print out the result.

Here, obviously, stats_mean gives access to the mean value of the measurements.
The function stats_rsdev_unbiased returns the unbiased relative standard deviation:
that is, a standard deviation that is unbiased3 and that is normalized with the mean value.

A typical output of that on my laptop looks like the following:

3Such that it is a true estimation of the standard deviation of the expected time, not only of our arbitrary
sample.

15. PERFORMANCE 213

LISTING 15.1. Measuring several code snippets repeatedly

53 timespec_get (&t[0], TIME_UTC);
54 /* Volatile for i ensures that the loop is effected */
55 for (uint64_t volatile i = 0; i < iterations; ++i) {
56 /* do nothing */
57 }
58 timespec_get (&t[1], TIME_UTC);
59 /* s must be volatile to ensure that the loop is effected */
60 for (uint64_t i = 0; i < iterations; ++i) {
61 s = i;
62 }
63 timespec_get (&t[2], TIME_UTC);
64 /* Opaque computation ensures that the loop is effected */
65 for (uint64_t i = 1; accu0 < upper; i += 2) {
66 accu0 += i;
67 }
68 timespec_get (&t[3], TIME_UTC);
69 /* A function call can usually not be optimized out. */
70 for (uint64_t i = 0; i < iterations; ++i) {
71 timespec_get (&tdummy , TIME_UTC);
72 accu1 += tdummy.tv_nsec;
73 }
74 timespec_get (&t[4], TIME_UTC);
75 /* A function call can usually not be optimized out , but
76 an inline function can. */
77 for (uint64_t i = 0; i < iterations; ++i) {
78 timespec_get (&tdummy , TIME_UTC);
79 stats_collect1 (& sdummy [1], tdummy.tv_nsec);
80 }
81 timespec_get (&t[5], TIME_UTC);
82 for (uint64_t i = 0; i < iterations; ++i) {
83 timespec_get (&tdummy , TIME_UTC);
84 stats_collect2 (& sdummy [2], tdummy.tv_nsec);
85 }
86 timespec_get (&t[6], TIME_UTC);
87 for (uint64_t i = 0; i < iterations; ++i) {
88 timespec_get (&tdummy , TIME_UTC);
89 stats_collect3 (& sdummy [3], tdummy.tv_nsec);
90 }
91 timespec_get (&t[7], TIME_UTC);

LISTING 15.2. Collecting time statistics with timespec_diff and stats_collect2

102 for (unsigned i = 0; i < loops; i++) {
103 double diff = timespec_diff (&t[i+1], &t[i]);
104 stats_collect2 (& statistic[i], diff);
105 }

Terminal

0 loop 0: E(t) (sec): 3.31e-02 ± 7.30%, loop body 1.97e-09

1 loop 1: E(t) (sec): 6.15e-03 ± 12.42%, loop body 3.66e-10

2 loop 2: E(t) (sec): 5.78e-03 ± 10.71%, loop body 3.45e-10

3 loop 3: E(t) (sec): 2.98e-01 ± 0.85%, loop body 1.77e-08

4 loop 4: E(t) (sec): 4.40e-01 ± 0.15%, loop body 2.62e-08

5 loop 5: E(t) (sec): 4.86e-01 ± 0.17%, loop body 2.90e-08

6 loop 6: E(t) (sec): 5.32e-01 ± 0.13%, loop body 3.17e-08

214 3. EXPERIENCE

LISTING 15.3. Printing time statistics with stats_mean and stats_rsdev_unbiased

109 for (unsigned i = 0; i < loops; i++) {
110 double mean = stats_mean (& statistic[i]);
111 double rsdev = stats_rsdev_unbiased (& statistic[i]);
112 printf("loop␣%u:␣E(t)␣(sec):\t%5.2e␣±␣%4.02f%%,\tloop␣body␣

%5.2e\n",
113 i, mean , 100.0* rsdev , mean/iterations);
114 }

Here, lines 0, 1, and 2 correspond to loops that we have not discussed yet, and lines 3 to 6
correspond to the loops we have discussed. Their relative standard deviations are less than
1%, so we can assert that we have a good statistic and that the times on the right are good
estimates of the cost per iteration. For example, on my 2.1 GHz laptop, this means the
execution of one loop iteration of loops 3, 4, 5, or 6 takes about 36, 55, 61, and 67 clock
cycles, respectively. So the extra cost when replacing the simple sum by stats_collect1
is 19 cycles, from there to stats_collect2 is 6, and yet another 6 cycles are needed if we
use stats_collect3 instead.

To see that this is plausible, let us look at the stats type:

1 typedef struct stats stats;
2 struct stats {
3 double moment [4];
4 };

Here we reserve one double for all statistical moments. Function stats_collect in the
following listing then shows how these are updated when we collect a new value that we
insert.

LISTING 15.4. Collecting statistics up to the third moment

120 /**
121 ** @brief Add value @a val to the statistic @a c.
122 **/
123 inline
124 void stats_collect(stats* c, double val , unsigned moments) {
125 double n = stats_samples(c);
126 double n0 = n-1;
127 double n1 = n+1;
128 double delta0 = 1;
129 double delta = val - stats_mean(c);
130 double delta1 = delta/n1;
131 double delta2 = delta1*delta*n;
132 switch (moments) {
133 default:
134 c->moment [3] += (delta2*n0 - 3*c->moment [2])*delta1;
135 case 2:
136 c->moment [2] += delta2;
137 case 1:
138 c->moment [1] += delta1;
139 case 0:
140 c->moment [0] += delta0;
141 }
142 }

15. PERFORMANCE 215

As previously mentioned, we see that this is a relatively simple algorithm to update
the moments incrementally. Important features compared to a naive approach are that we
avoid numerical imprecision by using the difference from the current estimation of the
mean value, and that this can be done without storing all the samples. This approach
was first described for mean and variance (first and second moments) by Welford [1962]
and was then generalized to higher moments; see Pébay [2008]. In fact, our functions
stats_collect1 and so on are just instantiations of that for the chosen number of mo-
ments.

. stats.h

154 inline
155 void stats_collect2(stats* c, double val) {
156 stats_collect(c, val , 2);
157 }

The assembler listing in stats_collect2 shows that our finding of using 25 cycles
for this functions seems plausible. It corresponds to a handful of arithmetic instructions,
loads, and stores.4

LISTING 15.5. GCC’s assembler for stats_collect2(c)
vmovsd 8(%rdi), %xmm1
vmovsd (%rdi), %xmm2
vaddsd .LC2(%rip), %xmm2 , %xmm3
vsubsd %xmm1 , %xmm0 , %xmm0
vmovsd %xmm3 , (%rdi)
vdivsd %xmm3 , %xmm0 , %xmm4
vmulsd %xmm4 , %xmm0 , %xmm0
vaddsd %xmm4 , %xmm1 , %xmm1
vfmadd213sd 16(%rdi), %xmm2 , %xmm0
vmovsd %xmm1 , 8(%rdi)
vmovsd %xmm0 , 16(%rdi)

Now, by using the example measurements, we still made one systematic error. We
took the points of measure outside the for loops. By doing so, our measurements also
form the instructions that correspond to the loops themselves. Listing 15.6 shows the three
loops that we skipped in the earlier discussion. These are basically empty, in an attempt to
measure the contribution of such a loop.

LISTING 15.6. Instrumenting three for loops with struct timespec
53 timespec_get (&t[0], TIME_UTC);
54 /* Volatile for i ensures that the loop is effected */
55 for (uint64_t volatile i = 0; i < iterations; ++i) {
56 /* do nothing */
57 }
58 timespec_get (&t[1], TIME_UTC);
59 /* s must be volatile to ensure that the loop is effected */
60 for (uint64_t i = 0; i < iterations; ++i) {
61 s = i;
62 }
63 timespec_get (&t[2], TIME_UTC);
64 /* Opaque computation ensures that the loop is effected */
65 for (uint64_t i = 1; accu0 < upper; i += 2) {
66 accu0 += i;

4This assembler shows x86_64 assembler features that we have not yet seen: floating-point hardware reg-
isters and instructions, and SSE registers and instructions. Here, memory locations (%rdi), 8(%rdi), and
16(%rdi) correspond to c->moment[i], for i = 0, 1, 2, the name of the instruction minus the v-prefix; sd-
postfix shows the operation that is performed; and vfmadd213sd is a floating-point multiply add instruction.

216 3. EXPERIENCE

67 }
68 timespec_get (&t[3], TIME_UTC);

In fact, when trying to measure for loops with no inner statement, we face a severe
problem: an empty loop with no effect can and will be eliminated at compile time by
the optimizer. Under normal production conditions, this is a good thing; but here, when
we want to measure, this is annoying. Therefore, we show three variants of loops that
should not be optimized out. The first declares the loop variable as volatile such that
all operations on the variable must be emitted by the compiler. Listings 15.7 and 15.8
show GCC’s and Clang’s versions of this loop. We see that to comply with the volatile
qualification of the loop variable, both have to issue several load and store instructions.

LISTING 15.7. GCC’s version of the first loop from Listing 15.6
.L510:

movq 24(%rsp), %rax
addq $1, %rax
movq %rax , 24(%rsp)
movq 24(%rsp), %rax
cmpq %rax , %r12
ja .L510

LISTING 15.8. Clang’s version of the first loop from listing 15.6
.LBB9_17:

incq 24(%rsp)
movq 24(%rsp), %rax
cmpq %r14 , %rax
jb .LBB9_17

For the next loop, we try to be a bit more economical by only forcing one volatile
store to an auxiliary variable s. As we can see in listings 15.9, the result is assembler code
that looks quite efficient: it consists of four instructions, an addition, a comparison, a jump,
and a store.

LISTING 15.9. GCC’s version of the second loop from listing 15.6
.L509:

movq %rax , s(%rip)
addq $1, %rax
cmpq %rax , %r12
jne .L509

To come even closer to the loop of the real measurements, in the next loop we use a
trick: we perform index computations and comparisons for which the result is meant to be
opaque to the compiler. Listing 15.10 shows that this results in assembler code similar to
the previous, only now we have a second addition instead of the store operation.

LISTING 15.10. GCC’s version of the third loop from listing 15.6
.L500:

addq %rax , %rbx
addq $2, %rax
cmpq %rbx , %r13
ja .L500

Table 15.1 summarizes the results we collected here and relates the differences be-
tween the various measurements. As we might expect, we see that loop 1 with the volatile
store is 80% faster than the loop with a volatile loop counter. So, using a volatile loop
counter is not a good idea, because it can deteriorate the measurement.

SUMMARY 217

Loop Sec per iteration Difference Gain/loss Conclusive
0 volatile loop 1.97·10−09

1 volatile store 3.66·10−10 -1.60·10−09 -81% Yes
2 Opaque addition 3.45·10−10 -2.10·10−11 -6% No
3 Plus timespec_get 1.77·10−08 1.74·10−08 +5043% Yes
4 Plus mean 2.62·10−08 8.5·10−09 +48% Yes
5 Plus variance 2.90·10−08 2.8·10−09 +11% Yes
6 Plus skew 3.17·10−08 2.7·10−09 +9% Yes

TABLE 15.1. Comparison of measurements

On the other hand, moving from loop 1 to loop 2 has a not-very-pronounced impact.
The 6% gain that we see is smaller than the standard deviation of the test, so we can’t even
be sure there is a gain at all. If we would really like to know whether there is a difference,
we would have to do more tests and hope that the standard deviation was narrowed down.

But for our goal to assess the time implications of our observation, the measurements
are quite conclusive. Versions 1 and 2 of the for loop have an impact that is about one to
two orders of magnitude below the impact of calls to timespec_get or stats_collect.
So we can assume that the values we see for loops 3 to 6 are good estimators for the
expected time of the measured functions.

There is a strong platform-dependent component in these measurements: time mea-
surement with timespec_get. In fact, we learned from this experience that on my ma-
chine,5 time measurement and statistics collection have a cost that is of the same order of
magnitude. For me, personally, this was a surprising discovery: when I wrote this section,
I thought time measurement would be much more expensive.

We also learned that simple statistics such as the standard deviation are easy to obtain
and can help to assert claims about performance differences.

Takeaway 3.15.3.6 Collecting higher-order moments of measurements to compute vari-
ance and skew is simple and cheap.

So, whenever you make performance claims in the future or see such claims made by
others, be sure the variability of the results has at least been addressed.

Takeaway 3.15.3.7 Runtime measurements must be hardened with statistics.

Summary

• Performance should not be traded for correctness.
• inline is an adequate tool to optimize small, pure, functions in place.
• restrict helps to deal with aliasing properties of function parameters. It has

to be used with care, because it imposes restrictions on the calling side of the
function that may not be enforceable at compile time.

• Claims of performance improvements must be accompanied by thorough mea-
surements and statistics.

5A commodity Linux laptop with a recent system and modern compilers as of 2016.

218 3. EXPERIENCE

16. Function-like macros

This section covers
• Checking arguments
• Accessing the calling context
• Working with variadic macros
• Type-generic programming

We have encountered function-like macros explicitly in subsection 10.2.1 and also
implicitly. Some interfaces in the C standard library are typically implemented by using
them, such as the type-generic interfaces in tgmath.h. We also have seen that function-<tgmath.h>

like macros can easily obfuscate our code and require a certain restrictive set of rules. The
easiest strategy to avoid many of the problems that come with function-like macros is to
only use them where they are irreplaceable, and to use appropriate means where they are
replaceable.

Takeaway 3.16.0.1 Whenever possible, prefer an inline function to a functional macro.

That is, in situations where we have a fixed number of arguments with a known type,
we should provide a proper type-safe interface in the form of a function prototype. Let us
suppose we have a simple function with side effects:

unsigned count(void) {
static counter = 0;
++ counter;
return counter;

}

Now consider that this function is used with a macro to square a value:

#define square_macro(X) (X*X) // Bad: do not use this.
...

unsigned a = count();
unsigned b = square_macro(count());

Here, the use of square_macro(count()) is replaced by count()*count(), two ex-
ecutions of count: [Exs 6]That is probably not what a naive reader expects at that point.

To achieve the same performance as with a function-like macro, it is completely suffi-
cient to provide an inline definition in a header file:

inline unsigned square_unsigned(unsigned x) { // Good
return x*x;

}
...

unsigned c = count();
unsigned d = square_unsigned(count());

Here, square_unsigned(count()) leads to only one execution of count. [Exs 7]

But there are many situations where function-like macros can do more than a function.
They can

• Force certain type mapping and argument checking
• Trace execution
• Provide interfaces with a variable number of arguments
• Provide type-generic interfaces
• Provide default arguments to functions

[Exs 6]Show that b == a*a + 3*a + 2.
[Exs 7]Show that d == c*c + 2*c + 1.

16. FUNCTION-LIKE MACROS 219

In this section, I will try to explain how such features can be implemented. We will
also discuss two other features of C that are clearly to be distinguished: one, _Generic,
because it is useful in macros and would be very tedious to use without them; and the other,
variadic functions, because they are now mostly obsolete and should not be used in new
code.

A warning about this section is also in order. Macro programming quickly becomes
ugly and barely readable, so you will need patience and good will to understand some of
the code here. Let us take an example:

#define MINSIZE(X, Y) (sizeof(X)<sizeof(Y) ? sizeof(X) :sizeof(Y))

The right side, the replacement string, is quite complex. It has four sizeof evaluations and
some operators that combine them. But the usage of this macro shouldn’t be difficult: it
simply computes the minimum size of the arguments.

Takeaway 3.16.0.2 A functional macro shall provide a simple interface to a complex
task.

16.1. How function-like macros work. To provide the features that we listed, C has
chosen a path that is quite different from other popular programming languages: textual
replacement. As we have seen, macros are replaced in a very early stage of compilation,
called preprocessing. This replacement follows a strict set of rules that are specified in the
C standard, and all compilers (on the same platform) should preprocess any source code to
exactly the same intermediate code.

Let us add the following to our example:

#define BYTECOPY(T, S) memcpy (&(T), &(S), MINSIZE(T, S))

Now we have two macro definitions for macros MINSIZE and BYTECOPY. The first has a
parameter list (X, Y) that defines two parameters X and Y, and replacement text

(sizeof(X)<sizeof(Y) ? sizeof(X) : sizeof(X))

that refers to X and Y. Similarly, BYTECOPY also has two parameters T and S and replacement
text starting with memcpy.

These macros fulfill our requirements about function-like macros: they evaluate each
argument only once,[Exs 8] parenthesize all arguments with (), and have no hidden effects
such as unexpected control flow. The parameters of a macro must be identifiers. A special
scope rule restricts the validity of these identifiers to use inside the replacement text.

When the compiler encounters the name of a functional macro followed by a clos-
ing pair of (), such as in BYTECOPY(A, B), it considers this a macro call and replaces it
textually according to the following rules:

(1) The definition of the macro is temporarily disabled to avoid infinite recursion.
(2) The text inside the (), the argument list, is scanned for parentheses and commas.

Each opening parenthesis (must match a). A comma that is not inside such
additional () is used to separate the argument list into the arguments. For the
case that we handle here, the number of arguments must match the number of
parameters in the definition of the macro.

(3) Each argument is recursively expanded for macros that might appear in them. In
our example, A could be yet another macro and expand to some variable name
such as redA.

(4) The resulting text fragments from the expansion of the arguments are assigned
to the parameters.

[Exs 8]Why is this so?

220 3. EXPERIENCE

(5) A copy of the replacement text is made, and all occurrences of the parameters
are replaced with their respective definitions.

(6) The resulting replacement text is subject to macro replacement, again.
(7) This final replacement text is inserted in the source instead of the macro call.
(8) The definition of the macro is re-enabled.

This procedure looks a bit complicated at first glance but is effectively quite easy to
implement and provides a reliable sequence of replacements. It is guaranteed to avoid
infinite recursion and complicated local variable assignments. In our case, the result of the
expansion of BYTECOPY(A, B) would be

memcpy (&(redA), &(B), (sizeof ((redA))<sizeof ((B))?sizeof ((redA)):sizeof ((
B))))

We already know that identifiers of macros (function-like or not) live in a namespace
of their own. This is for a very simple reason:

Takeaway 3.16.1.1 Macro replacement is done in an early translation phase, before any
other interpretation is given to the tokens that compose the program.

So the preprocessing phase knows nothing about keywords, types, variables, or other
constructs of later translation phases.

Since recursion is explicitly disabled for macro expansion, there can even be functions
that use the same identifier as a function-like macro. For example, the following is valid
C:

1 inline
2 char const* string_literal(char const str[static 1]){
3 return str;
4 }
5 #define string_literal(S) string_literal("" S "")

It defines a function string_literal that receives a character array as an argument, and a
macro of the same name that calls the function with a weird arrangement of the argument,
the reason for which we will see shortly. There is a more specialized rule that helps to deal
with situations where we have a macro and a function with the same name. It is analogous
to function decay (takeaway 2.11.4.1).

Takeaway 3.16.1.2 (macro retention) If a functional macro is not followed by (), it is
not expanded.

In the previous example, the definition of the function and of the macro depend on
their order of appearance. If the macro definition was given first, it would immediately
expand to something like

1 inline
2 char const* string_literal("" char const str[static 1] ""){ //

Error
3 return str;
4 }

which is erroneous. But if we surround the name string_literal with parentheses, it is
not expanded and remains a valid definition. A complete example could look like this:

1 // header file
2 #define string_literal(S) string_literal("" S "")
3 inline char const* (string_literal)(char const str[static 1]){

16. FUNCTION-LIKE MACROS 221

4 return str;
5 }
6 extern char const* (*func)(char const str[static 1]);
7 // One translation unit
8 char const* (string_literal)(char const str[static 1]);
9 // Another translation unit

10 char const* (*func)(char const str[static 1]) = string_literal;

That is, both the inline definition and the instantiating declaration of the function are pro-
tected by surrounding () and don’t expand the functional macro. The last line shows
another common usage of this feature. Here string_literal is not followed by (), so
both rules are applied. First macro retention inhibits the expansion of the macro, and then
function decay (takeaway 2.11.4.1) evaluates the use of the function to a pointer to that
function.

16.2. Argument checking.
As we said earlier, in cases where we have a fixed number of arguments with types

that are well-modeled by C’s type system, we should use functions and not function-like
macros. Unfortunately, C’s type system doesn’t cover all special cases that we might want
to distinguish.

An interesting such case is string literals that we want to pass to a potentially danger-
ous function such as printf. As we saw in subsection 5.6.1, string literals are read-only
but are not even const qualified. Also, an interface with [static 1], like the earlier
function string_literal, is not enforced by the language, because prototypes without
[static 1] are equivalent. In C, there is no way to prescribe for a parameter str of a
function interface that it should fulfill the following constraints:

• Is a character pointer
• Must be non-null
• Must be immutable9

• Must be 0-terminated
All these properties could be particularly useful to check at compile time, but we

simply have no way to specify them in a function interface.
The macro string_literal fills that gap in the language specification. The weird

empty string literals in its expansion "" X "" ensure that string_literal can only be
called with a string literal:

1 string_literal("hello"); // "" "hello" ""
2 char word [25] = "hello";
3 ...
4 string_literal(word); // "" word "" // Error

The macro and function string_literal are just a simple example of this strategy.
A more useful example would be

. macro_trace.h

12 /**
13 ** @brief A simple version of the macro that just does
14 ** a @c fprintf or nothing
15 **/
16 #if NDEBUG
17 # define TRACE_PRINT0(F, X) do { /* nothing */ } while (false)
18 #else
19 # define TRACE_PRINT0(F, X) fprintf(stderr , F, X)
20 #endif

9const only constrains the called function, not the caller.

222 3. EXPERIENCE

a macro that could be used in the context of a debug build of a program to insert debugging
output:

. macro_trace.c

17 TRACE_PRINT0("my␣favorite␣variable:␣%g\n", sum);

This looks harmless and efficient, but it has a pitfall: the argument F can be any pointer
to char. In particular, it could be a format string that sits in a modifiable memory region.
This may have the effect that an erroneous or malicious modification of that string leads
to an invalid format, and thus to a crash of the program, or could divulge secrets. In
subsection 16.5, we will see more in detail why this is particularly dangerous for functions
like fprintf.

In simple code as in the example, where we pass simple string literals to fprintf,
these problems should not occur. Modern compiler implementations are able to trace ar-
guments to fprintf (and similar) to check whether format specifiers and other arguments
match.

This check doesn’t work if the format that is passed to fprintf is not a string literal
but just any pointer to char. To inhibit that, we can enforce the use of a string literal here:

. macro_trace.h

22 /**
23 ** @brief A simple version of the macro that ensures that the @c
24 ** fprintf format is a string literal
25 **
26 ** As an extra , it also adds a newline to the printout , so
27 ** the user doesn 't have to specify it each time.
28 **/
29 #if NDEBUG
30 # define TRACE_PRINT1(F, X) do { /* nothing */ } while (false)
31 #else
32 # define TRACE_PRINT1(F, X) fprintf(stderr , "" F "\n", X)
33 #endif

Now, F must receive a string literal, and the compiler then can do the work and warn us
about a mismatch.

The macro TRACE_PRINT1 still has a weak point. If it is used with NDEBUG set, the
arguments are ignored and thus not checked for consistency. This can have the long-term
effect that a mismatch remains undetected for a long time and all of a sudden appears when
debugging.

So the next version of our macro is defined in two steps. The first uses a similar
#if/#else idea to define a new macro: TRACE_ON.

. macro_trace.h

35 /**
36 ** @brief A macro that resolves to @c 0 or @c 1 according to @c
37 ** NDEBUG being set
38 **/
39 #ifdef NDEBUG
40 # define TRACE_ON 0
41 #else
42 # define TRACE_ON 1
43 #endif

In contrast to the NDEBUG macro, which could be set to any value by the programmer, this
new macro is guaranteed to hold either 1 or 0. Second, TRACE_PRINT2 is defined with a
regular if conditional:

16. FUNCTION-LIKE MACROS 223

. macro_trace.h

45 /**
46 ** @brief A simple version of the macro that ensures that the @c
47 ** fprintf call is always evaluated
48 **/
49 #define TRACE_PRINT2(F, X) \
50 do { if (TRACE_ON) fprintf(stderr , "" F "\n", X); } while (false)

Whenever its argument is 0, any modern compiler should be able to optimize out the call
to fprintf. What it shouldn’t omit is the argument check for the parameters F and X.
So regardless of whether we are debugging, the arguments to the macro must always be
matching, because fprintf expects it.

Similar to the use of the empty string literal "" earlier, there are other tricks to force
a macro argument to be a particular type. One of these tricks consists of adding an ap-
propriate 0: +0 forces the argument to be any arithmetic type (integer, float, or pointer).
Something like +0.0F promotes to a floating type. For example, if we want to have a sim-
pler variant to just print a value for debugging, without keeping track of the type of the
value, this could be sufficient for our needs:

. macro_trace.h

52 /**
53 ** @brief Traces a value without having to specify a format
54 **/
55 #define TRACE_VALUE0(HEAD , X) TRACE_PRINT2(HEAD "␣%Lg", (X)+0.0L)

It works for any value X that is either an integer or a floating point. The format "%Lg" for
a long double ensures that any value is presented in a suitable way. Evidently, the HEAD
argument now must not contain any fprintf format, but the compiler will tell us if the
there is a mismatch.

Then, compound literals can be a convenient way to check whether the value of a
parameter X is assignment-compatible to a type T. Consider the following first attempt to
print a pointer value:

. macro_trace.h

57 /**
58 ** @brief Traces a pointer without having to specify a format
59 **
60 ** @warning Uses a cast of @a X to @c void*
61 **/
62 #define TRACE_PTR0(HEAD , X) TRACE_PRINT2(HEAD "␣%p", (void*)(X))

It tries to print a pointer value with a "%p" format, which expects a generic pointer of type
void*. Therefore, the macro uses a cast to convert the value and type of X to void*. Like
most casts, a cast here can go wrong if X isn’t a pointer: because the cast tells the compiler
that we know what we are doing, all type checks are actually switched off.

This can be avoided by assigning X first to an object of type void*. Assignment only
allows a restricted set of implicit conversions, here the conversion of any pointer to an
object type to void*:

. macro_trace.h

64 /**
65 ** @brief Traces a pointer without specifying a format
66 **/
67 #define TRACE_PTR1(HEAD , X) \
68 TRACE_PRINT2(HEAD "␣%p", ((void*){ 0 } = (X)))

224 3. EXPERIENCE

The trick is to use something like ((T){ 0 } = (X)) to check whether X is assignment-
compatible to type T. Here, the compound literal ((T){ 0 } first creates a temporary object
of type T to which we then assign X. Again, a modern optimizing compiler should optimize
away the use of the temporary object and only do the type checking for us.

16.3. Accessing the calling context.
Since macros are just textual replacements, they can interact much more closely with the

context of their caller. In general, for usual functionality, this isn’t desirable, and we are
better off with the clear separation between the context of the caller (evaluation of function
arguments) and that of the callee (use of function parameters).

In the context of debugging, though, we usually want to break that strict separation
to observe part of the state at a specific point in our code. In principle, we could access
any variable inside a macro, but generally we want some more specific information about
the calling environment: a trace of the position from which particular debugging output
originates.

C offers several constructs for that purpose. It has a special macro __LINE__ that
always expands to a decimal integer constant for the number of the actual line in the source:

. macro_trace.h

70 /**
71 ** @brief Adds the current line number to the trace
72 **/
73 #define TRACE_PRINT3(F, X) \
74 do { \
75 if (TRACE_ON) \
76 fprintf(stderr , "%lu:␣" F "\n", __LINE__ +0UL, X); \
77 } while (false)

Likewise, the macros __DATE__, __TIME__, and __FILE__ contain string literals with
the date and time of compilation and the name of the current TU. Another construct,
__func__, is a local static variable that holds the name of the current function:

. macro_trace.h

79 /**
80 ** @brief Adds the name of the current function to the trace
81 **/
82 #define TRACE_PRINT4(F, X) \
83 do { \
84 if (TRACE_ON) \
85 fprintf(stderr , "%s:%lu:␣" F "\n", \
86 __func__ , __LINE__ +0UL, X); \
87 } while (false)

If the following invocation

. macro_trace.c

24 TRACE_PRINT4("my␣favorite␣variable:␣%g", sum);

is at line 24 of the source file and main is its surrounding function, the corresponding output
looks similar to this:

Terminal

0 main:24: my favorite variable: 889

Another pitfall that we should have in mind if we are using fprintf automatically
as in this example is that all arguments in its list must have the correct type as given in

16. FUNCTION-LIKE MACROS 225

the specifier. For __func__, this is no problem: by its definition we know that this is
a char array, so the "%s" specifier is fine. __LINE__ is different. We know that it is a
decimal constant representing the line number. So if we revisit the rules for the types
of decimal constants in subsection 5.3, we see that the type depends on the value. On
embedded platforms, INT_MAX might be as small as 32767, and very large sources (perhaps
automatically produced) may have more lines than that. A good compiler should warn us
when such a situation arises.

Takeaway 3.16.3.1 The line number in __LINE__ may not fit into an int.

Takeaway 3.16.3.2 Using __LINE__ is inherently dangerous.

In our macros, we avoid the problem by either fixing the type to unsigned long10 or by
transforming the number to a string during compilation.

There is another type of information from the calling context that is often quite helpful
for traces: the actual expressions that we passed to the macro as arguments. As this is often
used for debugging purposes, C has a special operator for it: #. If such a # appears before a
macro parameter in the expansion, the actual argument to this parameter is stringified: that
is, all its textual content is placed into a string literal. The following variant of our trace
macro has a #X

. macro_trace.h

91 /**
92 ** @brief Adds a textual version of the expression that is

evaluated
93 **/
94 #define TRACE_PRINT5(F, X) \
95 do { \
96 if (TRACE_ON) \
97 fprintf(stderr , "%s:" STRGY(__LINE__) ":(" #X "):␣" F "\n", \
98 __func__ , X); \
99 } while (false)

that is replaced by the text of the second argument at each call of the macro. For the
following invocations

. macro_trace.c

25 TRACE_PRINT5("my␣favorite␣variable:␣%g", sum);
26 TRACE_PRINT5("a␣good␣expression:␣%g", sum*argc);

the corresponding output looks similar to

Terminal

0 main:25:(sum): my favorite variable: 889

1 main:26:(sum*argc): a good expression: 1778

Because the preprocessing phase knows nothing about the interpretation of these argu-
ments, this replacement is purely textual and should appear as in the source, with some
possible adjustments for whitespace.

Takeaway 3.16.3.3 Stringification with the operator # does not expand macros in its
argument.

10Hoping that no source will have more than 4 billion lines.

226 3. EXPERIENCE

In view of the potential problems with __LINE__ mentioned earlier, we also would
like to convert the line number directly into a string. This has a double advantage: it avoids
the type problem, and stringification is done entirely at compile time. As we said, the #
operator only applies to macro arguments, so a simple use like # __LINE__ does not have
the desired effect. Now consider the following macro definition:

. macro_trace.h

89 #define STRINGIFY(X) #X

Stringification kicks in before argument replacement, and the result of STRINGIFY(
__LINE__) is "__LINE__"; the macro __LINE__ is not expanded. So this macro still is not
sufficient for our needs.

Now, STRGY(__LINE__) first expands to STRINGIFY(25) (if we are on line 25). This
then expands to "25", the stringified line number:

. macro_trace.h

90 #define STRGY(X) STRINGIFY(X)

For completeness, we will also mention another operator that is only valid in the pre-
processing phase: the ## operator. It is for even more specialized use: it is a token con-
catenation operator. It can be useful when writing entire macro libraries where we have to
generate names for types or functions automatically.

16.4. Default arguments. Some functions of the C library have parameters that re-
ceive the same boring arguments most of the time. This is the case for strtoul and rela-
tives. Remember that these receive three arguments:

1 unsigned long int strtoul(char const nptr[restrict],
2 char** restrict endptr ,
3 int base);

The first is the string that we want to convert into an unsigned long. endptr will point
to the end of the number in the string, and base is the integer base for which the string is
interpreted. Two special conventions apply: if endptr may be a null pointer and if base is
0, the string is interpreted as hexadecimal (leading "0x"), octal (leading "0"), or decimal
otherwise.

Most of the time, strtoul is used without the endptr feature and with the symbolic
base set to 0, for example in something like

1 int main(int argc , char* argv[argc +1]) {
2 if (argc < 2) return EXIT_FAILURE;
3 size_t len = strtoul(argv[1], 0, 0);
4 ...
5 }

to convert the first command-line argument of a program to a length value. To avoid this
repetition and to have the reader of the code concentrate on the important things, we can
introduce an intermediate level of macros that provide these 0 arguments if they are omit-
ted:

. generic.h

114
115 /**
116 ** @brief Calls a three-parameter function with default

arguments
117 ** set to 0
118 **/

16. FUNCTION-LIKE MACROS 227

119 #define ZERO_DEFAULT3 (...) ZERO_DEFAULT3_0(__VA_ARGS__ , 0, 0,)
120 #define ZERO_DEFAULT3_0(FUNC , _0, _1, _2, ...) FUNC(_0, _1 , _2)
121
122 #define strtoul (...) ZERO_DEFAULT3(strtoul , __VA_ARGS__)
123 #define strtoull (...) ZERO_DEFAULT3(strtoull , __VA_ARGS__)
124 #define strtol (...) ZERO_DEFAULT3(strtol , __VA_ARGS__)

Here, the macro ZERO_DEFAULT3 works by subsequent addition and removal of argu-
ments. It is supposed to receive a function name and at least one argument that is to be
passed to that function. First, two zeros are appended to the argument list; then, if this
results in more than three combined arguments, the excess is omitted. So for a call with
just one argument, the sequence of replacements looks as follows:

strtoul(argv [1])
// ...
ZERO_DEFAULT3(strtoul , argv [1])
// ...
ZERO_DEFAULT3_0(strtoul , argv[1], 0, 0,)
// FUNC , _0 ,_1 ,_2 ,...
strtoul(argv[1], 0, 0)

Because of the special rule that inhibits recursion in macro expansion, the final function
call to strtoul will not be expanded further and is passed on to the next compilation
phases.

If instead we call strtoul with three arguments

strtoul(argv[1], ptr , 10)
// ...
ZERO_DEFAULT3(strtoul , argv[1], ptr , 10)
// ...
ZERO_DEFAULT3_0(strtoul , argv[1], ptr , 10, 0, 0,)
// FUNC , _0 , _1 , _2, ...
strtoul(argv[1], ptr , 10)

the sequence of replacements effectively results in exactly the same tokens with which we
started.

16.5. Variable-length argument lists. We have looked at functions that accept ar-
gument lists of variable length: printf, scanf, and friends. Their declarations have the
token ... at the end of the parameter list to indicate that feature: after an initial number
of known arguments (such as the format for printf), a list of arbitrary length of addi-
tional arguments can be provided. Later, in subsection 16.5.2, we will briefly discuss how
such functions can be defined. Because it is not type safe, this feature is dangerous and
almost obsolete, so we will not insist on it. Alternatively, we will present a similar feature,
variadic macros, that can mostly be used to replace the feature for functions.

16.5.1. Variadic macros. Variable-length argument macros, variadic macros for short,
use the same token ... to indicate the feature. As with functions, this token must appear
at the end of the parameter list:

. macro_trace.h

101 /**
102 ** @brief Allows multiple arguments to be printed in the
103 ** same trace
104 **/
105 #define TRACE_PRINT6(F, ...) \
106 do { \
107 if (TRACE_ON) \

228 3. EXPERIENCE

108 fprintf(stderr , "%s:" STRGY(__LINE__) ":␣" F "\n", \
109 __func__ , __VA_ARGS__); \
110 } while (false)

Here, in TRACE_PRINT6, this indicates that after the format argument F, any non-empty
list of additional arguments may be provided in a call. This list of expanded arguments is
accessible in the expansion through the identifier __VA_ARGS__. Thus a call such as

. macro_trace.c

27 TRACE_PRINT6("a␣collection:␣%g,␣%i", sum , argc);

just passes the arguments through to fprintf and results in the output

Terminal

0 main:27: a collection: 889, 2

Unfortunately, as it is written, the list in __VA_ARGS__ cannot be empty or absent. So
for what we have seen so far, we’d have to write a separate macro for the case where the
list is absent:

. macro_trace.h

113 ** @brief Only traces with a text message; no values printed
114 **/
115 #define TRACE_PRINT7 (...) \
116 do { \
117 if (TRACE_ON) \
118 fprintf(stderr , "%s:" STRGY(__LINE__) ":␣" __VA_ARGS__ "\n",\
119 __func__); \
120 } while (false)

But with more effort, these two functionalities can be united into a single macro:

. macro_trace.h

138 ** @brief Traces with or without values
139 **
140 ** This implementation has the particularity of adding a format
141 ** @c "%.0d" to skip the last element of the list , which was
142 ** artificially added.
143 **/
144 #define TRACE_PRINT8 (...) \
145 TRACE_PRINT6(TRACE_FIRST(__VA_ARGS__) "%.0d", \
146 TRACE_LAST(__VA_ARGS__))

Here, TRACE_FIRST and TRACE_LAST are macros that give access to the first and re-
maining arguments in the list, respectively. Both are relatively simple. They use auxiliary
macros that enable us to distinguish a first parameter _0 from the remainder __VA_ARGS__.
Since we want to be able to call both with one or more arguments, they add a new argument
0 to the list. For TRACE_FIRST, this goes well. This additional 0 is just ignored as are the
rest of the arguments:

. macro_trace.h

122 /**
123 ** @brief Extracts the first argument from a list of arguments
124 **/
125 #define TRACE_FIRST (...) TRACE_FIRST0(__VA_ARGS__ , 0)
126 #define TRACE_FIRST0(_0, ...) _0

16. FUNCTION-LIKE MACROS 229

For TRACE_LAST, this is a bit more problematic, since it extends the list in which we
are interested by an additional value:

. macro_trace.h

128 /**
129 ** @brief Removes the first argument from a list of arguments
130 **
131 ** @remark This is only suitable in our context ,
132 ** since this adds an artificial last argument.
133 **/
134 #define TRACE_LAST (...) TRACE_LAST0(__VA_ARGS__ , 0)
135 #define TRACE_LAST0(_0, ...) __VA_ARGS__

Therefore, TRACE_PRINT6 compensates for this with an additional format specifier, "%.0d",
that prints an int of width 0: that is, nothing. Testing it for the two different use cases

. macro_trace.c

29 TRACE_PRINT8("a␣collection:␣%g,␣%i", sum , argc);
30 TRACE_PRINT8("another␣string");

gives us exactly what we want:

Terminal

0 main:29: a collection: 889, 2

1 main:30: another string

The __VA_ARGS__ part of the argument list also can be stringified just like any other
macro parameter:

. macro_trace.h

148 /**
149 ** @brief Traces by first giving a textual representation of the
150 ** arguments
151 **/
152 #define TRACE_PRINT9(F, ...) \
153 TRACE_PRINT6("(" #__VA_ARGS__ ")␣" F, __VA_ARGS__)

The textual representation of the arguments

. macro_trace.c

31 TRACE_PRINT9("a␣collection:␣%g,␣%i", sum*acos (0), argc);

is inserted, including the commas that separate them:

Terminal

0 main:31: (sum*acos(0), argc) a collection: 1396.44, 2

So far, our variants of the trace macro that have a variable number of arguments must
also receive the correct format specifiers in the format argument F. This can be a tedious
exercise, since it forces us to always keep track of the type of each argument in the list that
is to be printed. A combination of an inline function and a macro can help us here. First
let us look at the function:

. macro_trace.h

166 /**
167 ** @brief A function to print a list of values

230 3. EXPERIENCE

168 **
169 ** @remark Only call this through the macro :: TRACE_VALUES ,
170 ** which will provide the necessary contextual information.
171 **/
172 inline
173 void trace_values(FILE* s,
174 char const func[static 1],
175 char const line[static 1],
176 char const expr[static 1],
177 char const head[static 1],
178 size_t len , long double const arr[len]) {
179 fprintf(s, "%s:%s:(%s)␣%s␣%Lg", func , line ,
180 trace_skip(expr), head , arr [0]);
181 for (size_t i = 1; i < len-1; ++i)
182 fprintf(s, ",␣%Lg", arr[i]);
183 fputc('\n', s);
184 }

It prints a list of long double values after preceding them with the same header informa-
tion, as we have done before. Only this time, the function receives the list of values through
an array of long double s of known length len. For reasons that we will see shortly, the
function actually always skips the last element of the array. Using a function trace_skip,
it also skips an initial part of the parameter expr.

The macro that passes the contextual information to the function comes in two levels.
The first is just massaging the argument list in different ways:

. macro_trace.h

204 /**
205 ** @brief Traces a list of arguments without having to specify
206 ** the type of each argument
207 **
208 ** @remark This constructs a temporary array with the arguments
209 ** all converted to @c long double. Thereby implicit conversion
210 ** to that type is always guaranteed.
211 **/
212 #define TRACE_VALUES (...) \
213 TRACE_VALUES0(ALEN(__VA_ARGS__), \
214 #__VA_ARGS__ , \
215 __VA_ARGS__ , \
216 0 \
217)

First, with the help of ALEN, which we will see in a moment, it evaluates the number
of elements in the list. Then it stringifies the list and finally appends the list itself plus an
additional 0. All this is fed into TRACE_VALUES0:

. macro_trace.h

219 #define TRACE_VALUES0(NARGS , EXPR , HEAD , ...) \
220 do { \
221 if (TRACE_ON) { \
222 if (NARGS > 1) \
223 trace_values(stderr , __func__ , STRGY(__LINE__), \
224 "" EXPR "", "" HEAD "", NARGS , \
225 (long double const[NARGS]){ __VA_ARGS__ }); \
226 else \
227 fprintf(stderr , "%s:" STRGY(__LINE__) ":␣%s\n", \
228 __func__ , HEAD); \

16. FUNCTION-LIKE MACROS 231

229 } \

Here, the list without HEAD is used as an initializer of a compound literal of type long
double const[NARG]. The 0 that we added earlier ensures that the initializer is never
empty. With the information on the length of the argument list, we are also able to make a
case distinction, if the only argument is just the format string.

We also need to show ALEN:

. macro_trace.h

186 /**
187 ** @brief Returns the number of arguments in the ... list
188 **
189 ** This version works for lists with up to 31 elements.
190 **
191 ** @remark An empty argument list is taken as one (empty)

argument.
192 **/
193 #define ALEN (...) ALEN0(__VA_ARGS__ , \
194 0x1E , 0x1F , 0x1D , 0x1C , 0x1B , 0x1A , 0x19 , 0x18 , \
195 0x17 , 0x16 , 0x15 , 0x14 , 0x13 , 0x12 , 0x11 , 0x10 , \
196 0x0E , 0x0F , 0x0D , 0x0C , 0x0B , 0x0A , 0x09 , 0x08 , \
197 0x07 , 0x06 , 0x05 , 0x04 , 0x03 , 0x02 , 0x01 , 0x00)
198
199 #define ALEN0(_00 , _01 , _02 , _03 , _04 , _05 , _06 , _07 , \
200 _08 , _09 , _0A , _0B , _0C , _0D , _0F , _0E , \
201 _10 , _11 , _12 , _13 , _14 , _15 , _16 , _17 , \
202 _18 , _19 , _1A , _1B , _1C , _1D , _1F , _1E , ...) _1E

The idea is to take the __VA_ARGS__ list and append a list of decreasing numbers 31,
30, . . . , 0. Then, by using ALEN0, we return the 31st element of that new list. Depending on
the length of the original list, this element will be one of the numbers. In fact, it is easy to
see that the returned number is exactly the length of the original list, provided it contains at
least one element. In our use case, there is always at least the format string, so the border
case of an empty list cannot occur.

16.5.2. A detour: variadic functions. Let us now have a brief look at variadic func-
tions: functions with variable-length argument lists. As already mentioned, these are spec-
ified by using the ... operator in the function declaration, such as in

int printf(char const format[static 1], ...);

Such functions have a fundamental problem in their interface definition. Unlike nor-
mal functions, at the call side it is not clear to which parameter type an argument should
be converted. For example, if we call printf("%d", 0), it is not immediately clear to the
compiler what kind of 0 the called function is expecting. For such cases, C has a set of
rules to determine the type to which an argument is converted. These are almost identical
to the rules for arithmetic:

Takeaway 3.16.5.1 When passed to a variadic parameter, all arithmetic types are con-
verted as for arithmetic operations, with the exception of float argu-
ments, which are converted to double.

So in particular when they are passed to a variadic parameter, types such as char and
short are converted to a wider type, usually int.

So far, so good: now we know how such functions get called. But unfortunately, these
rules tell us nothing about the type that the called function should expect to receive.

232 3. EXPERIENCE

Takeaway 3.16.5.2 A variadic function has to receive valid information about the type
of each argument in the variadic list.

The printf functions get away with this difficulty by imposing a specification for the
types inside the format argument. Let us look at the following short code snippet:

1 unsigned char zChar = 0;
2 printf("%hhu", zChar);

This has the effect that zChar is evaluated, promoted to int, and passed as an argument
to printf, which then reads this int and re-interprets the value as unsigned char. This
mechanism is
Complicated: because the implementation of the function must provide specialized code

for all the basic types
Error-prone: because each call depends on the fact that the argument types are correctly

transmitted to the function
Exigent: because the programmer has to check the type of each argument

In particular, the latter can cause serious portability bugs, because constants can have
different types from platform to platform. For example, the innocent call

printf("%d:␣%s\n", 65536, "a␣small␣number"); // Not portable

will work well on most platforms: those that have an int type with more than 16 bits. But
on some platforms, it may fail at runtime because 65536 is long. The worst example for
such a potential failure is the macro NULL:

printf("%p:␣%s\n", NULL , "print␣of␣NULL"); // Not portable

As we saw in subsection 11.1.5, NULL is only guaranteed to be a null pointer con-
stant. Compiler implementors are free to choose which variant they provide: some choose
(void*)0, with a type of void*; most choose 0, with a type of int. On platforms that
have different widths for pointers and int, such as all modern 64-bit platforms, the result
is a program crash. 11

Takeaway 3.16.5.3 Using variadic functions is not portable unless each argument is
forced to a specific type.

This is quite different from the use of variadic macros as we saw in the example of
TRACE_VALUES. There we used the variadic list as an initializer to an array, so all elements
were automatically converted to the correct target type.

Takeaway 3.16.5.4 Avoid variadic functions for new interfaces.

They are just not worth the pain. But if you have to implement a variadic function,
you need the C library header stdarg.h. It defines one type, va_list, and four function-<stdarg.h>

like macros that can be used as the different arguments behind a va_list. Their pseudo
interfaces look like this:

1 void va_start(va_list ap, parmN);
2 void va_end(va_list ap);
3 type va_arg(va_list ap, type);
4 void va_copy(va_list dest , va_list src);

11That is one of the reasons we should not use NULL at all (takeaway 2.11.1.14).

16. FUNCTION-LIKE MACROS 233

The first example shows how to actually avoid programming the core part of a variadic
function. For anything that concerns formatted printing, there are existing functions we
should use:

. va_arg.c

20 FILE* iodebug = 0;
21
22 /**
23 ** @brief Prints to the debug stream @c iodebug
24 **/
25 #ifdef __GNUC__
26 __attribute__ ((format(printf , 1, 2)))
27 #endif
28 int printf_debug(const char *format , ...) {
29 int ret = 0;
30 if (iodebug) {
31 va_list va;
32 va_start(va, format);
33 ret = vfprintf(iodebug , format , va);
34 va_end(va);
35 }
36 return ret;
37 }

The only thing we do with va_start and va_end is to create a va_list argument list and
pass this information on to the C library function vfprintf. This completely spares us
from doing the case analysis and tracking the arguments. The conditional __attribute__
is compiler specific (here, for GCC and friends). Such an add-on may be very helpful in
situations where a known parameter convention is applied and where the compiler can do
some good diagnostics to ensure the validity of the arguments.

Now we will look at a variadic function that receives n double values and that sums
them up:[Exs 12]

. va_arg.c

6 /**
7 ** @brief A small , useless function to show how variadic
8 ** functions work
9 **/

10 double sumIt(size_t n, ...) {
11 double ret = 0.0;
12 va_list va;
13 va_start(va, n);
14 for (size_t i = 0; i < n; ++i)
15 ret += va_arg(va, double);
16 va_end(va);
17 return ret;
18 }

The va_list is initialized by using the last argument before the list. Observe that
by some magic, va_start receives va as such and not with an address operator &. Then,
inside the loop, every value in the list is received through the use of the va_arg macro,
which needs an explicit specification (here, double) of its type argument. Also, we have to
maintain the length of the list ourselves, here by passing the length as an argument to the

[Exs 12]Variadic functions that only receive arguments that are all the same type can be replaced by a variadic macro
and an inline function that takes an array. Do it.

234 3. EXPERIENCE

function. The encoding of the argument type (here, implicit) and the detection of the end
of the list are left up to the programmer of the function.

Takeaway 3.16.5.5 The va_arg mechanism doesn’t give access to the length of the
va_list.

Takeaway 3.16.5.6 A variadic function needs a specific convention for the length of the
list.

16.6. Type-generic programming. One of the genuine additions of C11 to the C lan-
guage has been direct language support for type-generic programming. C99 had tgmath.h<tgmath.h>

(see subsection 8.2) for type-generic mathematical functions, but it didn’t offer much to
program such interfaces yourself. The specific add-on is the keyword _Generic, which
introduces a primary expression of the following form:

1 _Generic(controlling expression,
2 type1: expression1,
3 ... ,
4 typeN: expressionN)

This is very similar to a switch statement. But the controlling expression is only taken for
its type (but see shortly), and the result is one of the expressions expression1 . . . expressionN
chosen by the corresponding type-specific type1 . . . typeN, of which one may be simply the
keyword default.

One of the simplest use cases, and primarily what the C committee had in mind, is to
use _Generic for a type-generic macro interface by providing a choice between function
pointers. A basic example for this is the the tgmath.h interfaces, such as fabs. _Generic
is not a macro feature itself but can conveniently be used in a macro expansion. By ignoring
complex floating-point types, such a macro for fabs could look like this:

1 #define fabs(X) \
2 _Generic ((X), \
3 float: fabsf , \
4 long double: fabsl , \
5 default: fabs)(X)

This macro distinguishes two specific types, float and long double, which choose the
corresponding functions fabsf and fabsl, respectively. If the argument X is of any other
type, it is mapped to the default case of fabs. That is, other arithmetic types such as
double and integer types are mapped to fabs.[Exs 13][Exs 14]

Now, once the resulting function pointer is determined, it is applied to the argument
list (X) that follows the _Generic primary expression.

Here comes a more complete example:

. generic.h

7 inline
8 double min(double a, double b) {
9 return a < b ? a : b;

10 }
11
12 inline
13 long double minl(long double a, long double b) {
14 return a < b ? a : b;

[Exs 13]Find the two reasons why this occurrence of fabs in the macro expansion is not itself expanded.
[Exs 14]Extend the fabs macro to cover complex floating-point types.

16. FUNCTION-LIKE MACROS 235

15 }
16
17 inline
18 float minf(float a, float b) {
19 return a < b ? a : b;
20 }
21
22 /**
23 ** @brief Type-generic minimum for floating-point values
24 **/
25 #define min(A, B) \
26 _Generic ((A)+(B), \
27 float: minf , \
28 long double: minl , \
29 default: min)((A), (B))

It implements a type-generic interface for the minimum of two real values. Three
different inline functions for the three floating-point types are defined and then used in
a similar way as for fabs. The difference is that these functions need two arguments, not
only one, so the _Generic expression must decide on a combination of the two types.
This in done by using the sum of the two arguments as a controlling expression. As a
consequence, argument promotions and conversion are effected to the arguments of that
plus operation, and so the _Generic expression chooses the function for the wider of the
two types, or double if both arguments are integers.

The difference from just having one function for long double, say, is that the infor-
mation about the type of the concrete arguments is not lost.

Takeaway 3.16.6.1 The result type of a _Generic expression is the type of the chosen
expression.

This is in contrast to what is happening, for example, for the ternary operator a?b:c.
Here, the return type is computed by combining the two types b and c. For the ternary
operator, this must be done like that because a may be different from run to run, so either
b or c may be selected. Since _Generic makes its choice based upon the type, this choice
is fixed at compile time. So, the compiler can know the resulting type of the choice in
advance.

In our example, we can be sure that all generated code that uses our interface will
never use wider types than the programmer has foreseen. In particular, our min macro
should always result in the compiler inlining the appropriate code for the types in ques-
tion.[Exs 15][Exs 16]

Takeaway 3.16.6.2 Using _Generic with inline functions adds optimization opportu-
nities.

The interpretation of what it means to talk about the type of the controlling expression
is a bit ambiguous, so C17 clarifies this in comparison to C11. In fact, as the previous
examples imply, this type is the type of the expression as if it were passed to a function.
This means in particular:

• If there are any, type qualifiers are dropped from the type of the controlling ex-
pression.

• An array type is converted to a pointer type to the base type.
• A function type is converted to a pointer to a function.

[Exs 15]Extend the min macro to cover all wide integer types.
[Exs 16]Extend min to cover pointer types, as well.

236 3. EXPERIENCE

Takeaway 3.16.6.3 The type expressions in a _Generic expression should only be un-
qualified types: no array types, and no function types.

That doesn’t mean the type expressions can’t be pointers to one of those: a pointer
to a qualified type, a pointer to an array, or a pointer to a function. But generally, this
rules makes the task of writing a type-generic macro easier, since we do not have to take
all combinations of qualifiers into account. There are 3 qualifiers (4 for pointer types), so
otherwise all different combinations would lead to 8 (or even 16) different type expressions
per base type. The following example MAXVAL is already relatively long: it has a special
case for all 15 orderable types. If we also had to track qualifications, we would have to
specialize 120 cases!

. generic.h

31 /**
32 ** @brief The maximum value for the type of @a X
33 **/
34 #define MAXVAL(X) \
35 _Generic ((X), \
36 bool: (bool)+1, \
37 char: (char)+CHAR_MAX , \
38 signed char: (signed char)+SCHAR_MAX , \
39 unsigned char: (unsigned char)+UCHAR_MAX , \
40 signed short: (signed short)+SHRT_MAX , \
41 unsigned short: (unsigned short)+USHRT_MAX , \
42 signed: INT_MAX , \
43 unsigned: UINT_MAX , \
44 signed long: LONG_MAX , \
45 unsigned long: ULONG_MAX , \
46 signed long long: LLONG_MAX , \
47 unsigned long long: ULLONG_MAX , \
48 float: FLT_MAX , \
49 double: DBL_MAX , \
50 long double: LDBL_MAX)

This is an example where a _Generic expression is used differently than earlier, where
we “just” chose a function pointer and then called the function. Here the resulting value is
an integer constant expression. This never could be realized by function calls, and it would
be very tedious to implement just with macros.[Exs 17] Again, with a conversion trick, we
can get rid of some cases we might not be interested in:

. generic.h

52 /**
53 ** @brief The maximum promoted value for @a XT, where XT
54 ** can be an expression or a type name
55 **
56 ** So this is the maximum value when fed to an arithmetic
57 ** operation such as @c +.
58 **
59 ** @remark Narrow types are promoted , usually to @c signed ,
60 ** or maybe to @c unsigned on rare architectures.
61 **/
62 #define maxof(XT) \
63 _Generic (0+(XT)+0, \
64 signed: INT_MAX , \
65 unsigned: UINT_MAX , \

[Exs 17]Write an analogous macro for the minimum value.

16. FUNCTION-LIKE MACROS 237

66 signed long: LONG_MAX , \
67 unsigned long: ULONG_MAX , \
68 signed long long: LLONG_MAX , \
69 unsigned long long: ULLONG_MAX , \
70 float: FLT_MAX , \
71 double: DBL_MAX , \
72 long double: LDBL_MAX)

Here, the special form of the controlling expression adds an additional feature. The ex-
pression 0+(identifier)+0 is valid if identifier is a variable or if it is a type. If it is a
variable, the type of the variable is used, and it is interpreted just like any other expression.
Then integer promotion is applied to it, and the resulting type is deduced.

If it is a type, (identifier)+0 is read as a cast of +0 to type identifier. Adding
0+ from the left then still ensures that integer promotion is performed if necessary, so the
result is the same if XT is a type T or an expression X of type T.[Exs 18][Exs 19][Exs 20]

Another requirement for the type expressions in a _Generic expression is that the
choice must be unambiguous at compile time.

Takeaway 3.16.6.4 The type expressions in a _Generic expression must refer to mutu-
ally incompatible types.

Takeaway 3.16.6.5 The type expressions in a _Generic expression cannot be a pointer
to a VLA.

A different model than the function-pointer-call variant can be convenient, but it also
has some pitfalls. Let us try to use _Generic to implement the two macros TRACE_FORMAT
and TRACE_CONVERT, which are used in the following:

. macro_trace.h

278 /**
279 ** @brief Traces a value without having to specify a format
280 **
281 ** This variant works correctly with pointers.
282 **
283 ** The formats are tunable by changing the specifiers in
284 ** :: TRACE_FORMAT.
285 **/
286 #define TRACE_VALUE1(F, X) \
287 do { \
288 if (TRACE_ON) \
289 fprintf(stderr , \
290 TRACE_FORMAT("%s:" STRGY(__LINE__) ":␣" F, X), \
291 __func__ , TRACE_CONVERT(X)); \
292 } while (false)

TRACE_FORMAT is straightforward. We distinguish six different cases:

. macro_trace.h

232 /**
233 ** @brief Returns a format that is suitable for @c fprintf

[Exs 18]Write a macro PROMOTE(XT, A) that returns the value of A as type XT. For example, PROMOTE(1u, 3)
would be 3u.

[Exs 19]Write a macro SIGNEDNESS(XT) that returns false or true according to the signedness of the type of XT.
For example, SIGNEDNESS(1l) would be true.

[Exs 20]Write a macro mix(A, B) that computes the maximum value of A and B. If both have the same signedness,
the result type should be the wider type of the two. If both have different signedness, the return type should be an
unsigned type that fits all positive values of both types.

238 3. EXPERIENCE

234 **
235 ** @return The argument @a F must be a string literal ,
236 ** so the return value will be.
237 **
238 **/
239 #define TRACE_FORMAT(F, X) \
240 _Generic ((X)+0LL, \
241 unsigned long long: "" F "␣%llu\n", \
242 long long: "" F "␣%lld\n", \
243 float: "" F "␣%.8f\n", \
244 double: "" F "␣%.12f\n", \
245 long double: "" F "␣%.20Lf\n", \
246 default: "" F "␣%p\n")

The default case, when no arithmetic type is matched, supposes that the argument
has a pointer type. In that case, to be a correct parameter for fprintf, the pointer must be
converted to void*. Our goal is to implement such a conversion through TRACE_CONVERT.

A first try could look like the following:

1 #define TRACE_CONVERT_WRONG(X) \
2 _Generic ((X)+0LL, \
3 unsigned long long: (X)+0LL, \
4 ... \
5 default: ((void*){ 0 } = (X)))

This uses the same trick as for TRACE_PTR1 to convert the pointer to void*. Unfortunately,
this implementation is wrong.

Takeaway 3.16.6.6 All choices expression1 ... expressionN in a _Generic must be
valid.

If, for example, X is an unsigned long long, say 1LL, the default case would read

((void*){ 0 } = (1LL))

which would be assigning a non-zero integer to a pointer, which is erroneous.21

We tackle this in two steps. First we have a macro that returns either its argument, the
default, or a literal zero:

. macro_trace.h

248 /**
249 ** @brief Returns a value that forcibly can be interpreted as
250 ** pointer value
251 **
252 ** That is, any pointer will be returned as such , but other
253 ** arithmetic values will result in a @c 0.
254 **/
255 #define TRACE_POINTER(X) \
256 _Generic ((X)+0LL, \
257 unsigned long long: 0, \
258 long long: 0, \
259 float: 0, \
260 double: 0, \
261 long double: 0, \
262 default: (X))

21Remember that conversion from non-zero integers to pointers must be made explicit through a cast.

SUMMARY 239

This has the advantage that a call to TRACE_POINTER(X) can always be assigned to a void*.
Either X itself is a pointer, and so is assignable to void*, or it is of another arithmetic type,
and the result of the macro invocation is 0. Put all together, TRACE_CONVERT looks as
follows:

. macro_trace.h

264 /**
265 ** @brief Returns a value that is promoted either to a wide
266 ** integer , to a floating point , or to a @c void* if @a X is a
267 ** pointer
268 **/
269 #define TRACE_CONVERT(X) \
270 _Generic ((X)+0LL, \
271 unsigned long long: (X)+0LL, \
272 long long: (X)+0LL, \
273 float: (X)+0LL, \
274 double: (X)+0LL, \
275 long double: (X)+0LL, \
276 default: ((void*){ 0 } = TRACE_POINTER(X)))

Summary

• Function-like macros are more flexible than inline functions.
• They can be used to complement function interfaces with compile-time argu-

ment checks and to provide information from the calling environment or default
arguments.

• They allow us to implement type-safe features with variable argument lists.
• In combination with _Generic, they can be used to implement type-generic in-

terfaces.

240 3. EXPERIENCE

17. Variations in control flow

This section covers
• Understanding normal sequencing of statements in C
• Making short and long jumps through code
• Function control flow
• Handling signals

The control flow (see figure 2.1) of program execution describes how the individual
statements of the program code are sequenced: that is, which statement is executed after
another. Up to now, we have mostly looked at code that let us deduce this control flow from
syntax and a controlling expression. That way, each function can be described using a hier-
archical composition of basic blocks. A basic block is a maximum sequence of statements
such that once execution starts at the first of these statements, it continues unconditionally
until the last, and such that all execution of any statement in the sequence starts with the
first.

If we are supposing that all conditionals and loop statements use {} blocks, in a sim-
plified view such a basic block

• Starts either at the beginning of a {}-block or a case or jump label
• Ends either at the end of the corresponding {} block or at the next

– Statement that is the target of a case or jump label
– Body of a conditional or loop statement
– return statement
– goto statement
– Call to a function with special control flow

Observe that in this definition, no exception is made for general function calls: these
are seen to temporarily suspend execution of a basic block but not to end it. Among the
functions with special control flow that end a basic block are some we know: those marked
with the keyword _Noreturn, such as exit and abort. Another such function is setjmp,
which may return more than once, as discussed later.

Code that is just composed of basic blocks that are stitched together by if/else22 or
loop statements has the double advantage of being easily readable for us humans, and leads
to better optimization opportunities for the compiler. Both can directly deduce the lifetime
and access pattern of variables and compound literals in basic blocks, and then capture how
these are melded by the hierarchical composition of the basic blocks into their function.

A theoretical foundation of this structured approach was given quite early for Pascal
programs by Nishizeki et al. [1977] and extended to C and other imperative languages by
Thorup [1995]. They prove that structured programs (that is, programs without goto or
other arbitrary jump constructs) have a control flow that matches nicely into a tree-like
structure that can be deduced from the syntactical nesting of the program. Unless you have
to do otherwise, you should stick to that programming model.

Nevertheless, some exceptional situations require exceptional measures. Generally,
changes to the control flow of a program can originate from
Conditional statements: if/else, switch/case
Loop statements: do{}while(), while(), for()
Functions: Function calls, return statements, or _Noreturn specifications
Short jumps: goto and labels
Long jumps: setjmp/longjmp, getcontext/setcontext23

Interrupts: signals and signal handlers
Threads: thrd_create, thrd_exit

22switch/case statements complicate the view a bit.
23Defined in POSIX systems.

17. VARIATIONS IN CONTROL FLOW 241

These changes in control flow can mix up the knowledge the compiler has about the
abstract state of the execution. Roughly, the complexity of the knowledge that a human
or mechanical reader has to track increases from top to bottom in that list. Up to now, we
have only seen the first four constructs. These correspond to language features, which are
determined by syntax (such as keywords) or by operators (such as the () of a function call).
The latter three are introduced by C library interfaces. They provide changes in the control
flow of a program that can jump across function boundaries (longjmp), can be triggered
by events that are external to the program (interrupts), or can even establish a concurrent
control flow, another thread of execution.

Various difficulties may arise when objects are under the effect of unexpected control
flow:

• Objects could be used outside their lifetime.
• Objects could be used uninitialized.
• Values of objects could be misinterpreted by optimizing (volatile).
• Objects could be partially modified (sig_atomic_t, atomic_flag, or _Atomic

with the lock-free property and relaxed consistency).
• Updates to objects could be sequenced unexpectedly (all _Atomic).
• Execution must be guaranteed to be exclusive inside a critical section (mtx_t).

Because access to the objects that constitute the state of a program becomes compli-
cated, C provides features that help to cope with the difficulties. In this list, they are noted
in parentheses, and we will discuss them in detail in the following subsections.

17.1. A complicated example. To illustrate most of these concepts, we will discuss
some central example code: a recursive descent parser called basic_blocks. The central
function descend is presented in the following listing.

This code serves several purposes. First, it obviously presents several features that we
discuss later: recursion, short jumps (goto), long jumps (longjmp), and interrupt handling.

But at least as important, it is probably the most difficult code we have handled so far
in this book, and for some of you it might even be the most complicated code you have ever
seen. Yet, with its 36 lines, it still fit on one screen, and it is by itself an affirmation that C
code can be very compact and efficient. It might take you hours to understand, but please
do not despair; you might not know it yet, but if you have worked thoroughly through this
book, you are ready for this.

The function implements a recursive descent parser that recognizes {} constructs in
text given on stdin and indents this text on output, according to the nesting of the {}.
More formally, written in Backus-Nauer-form (BNF)24 this function detects text as of the
following recursive definition

program := some-text? ['{'program'}'some-text?]?
and prints such a program conveniently by changing the line structure and indentation.

The operational description of the program is to handle text, in particular to indent C
code or similar in a special way. If we feed the program text from listing 3.1 into this, we
see the following output:

24This is a formalized description of computer-readable languages. Here, program is recursively defined to
be a sequence of text, optionally followed by another sequence of programs that are inside curly braces.

242 3. EXPERIENCE

LISTING 17.1. A recursive descent parser for code indentation

60 static
61 char const* descend(char const* act ,
62 unsigned dp[restrict static 1], // Bad
63 size_t len , char buffer[len],
64 jmp_buf jmpTarget) {
65 if (dp[0]+3 > sizeof head) longjmp(jmpTarget , tooDeep);
66 ++dp[0];
67 NEW_LINE: // Loops on output
68 while (!act || !act [0]) { // Loops for input
69 if (interrupt) longjmp(jmpTarget , interrupted);
70 act = skipspace(fgets(buffer , len , stdin));
71 if (!act) { // End of stream
72 if (dp[0] != 1) longjmp(jmpTarget , plusL);
73 else goto ASCEND;
74 }
75 }
76 fputs (&head[sizeof head - (dp[0] + 2)], stdout); // Header
77
78 for (; act && act [0]; ++act) { // Remainder of the line
79 switch (act [0]) {
80 case LEFT: // Descends on left brace
81 act = end_line(act+1, jmpTarget);
82 act = descend(act , dp, len , buffer , jmpTarget);
83 act = end_line(act+1, jmpTarget);
84 goto NEW_LINE;
85 case RIGHT: // Returns on right brace
86 if (dp[0] == 1) longjmp(jmpTarget , plusR);
87 else goto ASCEND;
88 default: // Prints char and goes on
89 putchar(act [0]);
90 }
91 }
92 goto NEW_LINE;
93 ASCEND:
94 --dp[0];
95 return act;
96 }

17. VARIATIONS IN CONTROL FLOW 243

Terminal

0 > ./code/basic_blocks < code/heron.c

1 | #include <stdlib.h>

2 | #include <stdio.h>

3 | /* lower and upper iteration limits centered around 1.0 */

4 | static double const eps1m01 = 1.0 - 0x1P-01;

5 | static double const eps1p01 = 1.0 + 0x1P-01;

6 | static double const eps1m24 = 1.0 - 0x1P-24;

7 | static double const eps1p24 = 1.0 + 0x1P-24;

8 | int main(int argc, char* argv[argc+1])

9 >| for (int i = 1; i < argc; ++i)

10 >>| // process args

11 >>| double const a = strtod(argv[i], 0); // arg -> double

12 >>| double x = 1.0;

13 >>| for (;;)

14 >>>| // by powers of 2

15 >>>| double prod = a*x;

16 >>>| if (prod < eps1m01) x *= 2.0;

17 >>>| else if (eps1p01 < prod) x *= 0.5;

18 >>>| else break;

19 >>>|

20 >>| for (;;)

21 >>>| // Heron approximation

22 >>>| double prod = a*x;

23 >>>| if ((prod < eps1m24) || (eps1p24 < prod))

24 >>>| x *= (2.0 - prod);

25 >>>| else break;

26 >>>|

27 >>| printf("heron: a=%.5e,\tx=%.5e,\ta*x=%.12f\n",

28 >>| a, x, a*x);

29 >>|

30 >| return EXIT_SUCCESS;

31 >|

So basic_blocks “eats” curly braces {} and instead indents the code with a series of >
characters: each level of nesting {} adds a >.

For a high-level view of how this function achieves this, and abstracting away all the
functions and variables you do not know yet, have a look at the switch statement that
starts on line 79 and the for loop that surrounds it. It switches according to the current
character. Three different cases are distinguished. The simplest is the default case: a
normal character is printed, the character is advanced, and the next iteration starts.

The two other cases handle { and } characters. If we encounter an opening brace, we
know that we have to indent the text with one more >. Therefore, we recurse into the same
function descend again; see line 82. If, on the other hand, a closing brace is encountered,
we go to ASCEND and terminate this recursion level. The recursion depth itself is handled
with the variable dp[0], which is incremented on entry (line 66) and decremented on exit
(line 94).

244 3. EXPERIENCE

If you are trying to understand this program for the first time, the rest is noise. This
noise helps to handle exceptional cases, such as an end of line or a surplus of left or right
braces. We will see how all this works in much more detail later.

17.2. Sequencing. Before we can look at the details of how the control flow of a
program can change in unexpected ways, we must better understand what the normal se-
quence of C statements guarantees and what it does not. We saw in subsection 4.5 that the
evaluation of C expressions does not necessarily follow the lexicographical order as they
are written. For example, the evaluation of function arguments can occur in any order. The
different expressions that constitute the arguments can even be interleaved to the discretion
of the compiler, or depending on the availability of resources at execution time. We say
that function argument expressions are unsequenced.

There are several reasons for establishing only relaxed rules for evaluation. One is
to allow for the easy implementation of optimizing compilers. Efficiency of the compiled
code has always been a strong point of C compared to other programming languages.

But another reason is that C does not add arbitrary restrictions when they don’t have a
convincing mathematical or technical foundation. Mathematically, the two operands a and
b in a+b are freely exchangeable. Imposing an evaluation order would break this rule, and
arguing about a C program would become more complicated.

In the absence of threads, most of C’s formalization of this is done with sequence
points. These are points in the syntactical specification of the program that impose a seri-
alization of the execution. But we will also later see additional rules that force sequencing
between the evaluation of certain expressions that don’t imply sequence points.

On a high level, a C program can be seen as a series of sequence points that are
reached one after the other, and the code between such sequence points may be executed
in any order, be interleaved, or obey certain other sequencing constraints. In the simplest
case, for example, when two statements are separated by a ;, a statement before a sequence
point is sequenced before the statement after the sequence point.

But even the existence of sequence points may not impose a particular order between
two expressions: it only imposes that there is some order. To see that, consider the follow-
ing code, which is well defined:

. sequence_point.c

3 unsigned add(unsigned* x, unsigned const* y) {
4 return *x += *y;
5 }
6 int main(void) {
7 unsigned a = 3;
8 unsigned b = 5;
9 printf("a␣=␣%u,␣b␣=␣%u\n", add(&a, &b), add(&b, &a));

10 }

From subsection 4.5, remember that the two arguments to printf can be evaluated in
any order, and the rules for sequence points that we will see shortly will tell us that the
function calls to add impose sequence points. As a result, we have two possible outcomes
for this code. Either the first add is executed first, entirely, and then the second, or the other
way around. For the first possibility, we have

• a is changed to 8, and that value is returned.
• b is changed to 13, and that value is returned.

The output of such an execution is

Terminal

0 a = 8, b = 13

17. VARIATIONS IN CONTROL FLOW 245

For the second, we get
• b is changed to 8, and that value is returned.
• a is changed to 11, and that value is returned.

And the output is

Terminal

0 a = 11, b = 8

That is, although the behavior of this program is defined, its outcome is not completely
determined by the C standard. The specific terminology that the C standard applies to such
a situation is that the two calls are indeterminately sequenced. This is not just a theoretical
discussion; the two commonly used open source C compilers GCC and Clang differ on
this simple code. Let me stress this again: all of this is defined behavior. Don’t expect a
compiler to warn you about such problems.

Takeaway 3.17.2.1 Side effects in functions can lead to indeterminate results.

Here is a list of all sequence points that are defined in terms of C’s grammar:
• The end of a statement, with either a semicolon (;) or a closing brace (})
• The end of an expression before the comma operator (,)25

• The end of a declaration, with either a semicolon (;) or a comma (,)26

• The end of the controlling expressions of if, switch, for, while, conditional
evaluation (?:), and short-circuit evaluation (|| and &&)

• After the evaluations of the function designator (usually a function name) and
the function arguments of a function call27 but before the actual call

• The end of a return statement
There are other sequencing restrictions besides those implied by sequence points. The

first two are more or less obvious but should be stated nevertheless:

Takeaway 3.17.2.2 The specific operation of any operator is sequenced after the evalu-
ation of all its operands.

Takeaway 3.17.2.3 The effect of updating an object with any of the assignment, in-
crement, or decrement operators is sequenced after the evaluation of its
operands.

For function calls, there also is an additional rule that says the execution of a function
is always completed before any other expression.

Takeaway 3.17.2.4 A function call is sequenced with respect to all evaluations of the
caller.

As we have seen, this might be indeterminately sequenced, but sequenced neverthe-
less.

Another source of indeterminately sequenced expressions originates from initializers.

Takeaway 3.17.2.5 Initialization-list expressions for array or structure types are inde-
terminately sequenced.

25Be careful: commas that separate function arguments are not in this category.
26This also holds for a comma that ends the declaration of an enumeration constant.
27This sees the function designator on the same level as the function arguments.

246 3. EXPERIENCE

Last but not least, some sequence points are also defined for the C library:
• After the actions of format specifiers of the IO functions
• Before any C library function returns28

• Before and after calls to the comparison functions used for searching and sorting
The latter two impose rules for C library functions that are similar to those for ordinary
functions. This is needed because the C library itself might not necessarily be implemented
in C.

17.3. Short jumps. We have seen a feature that interrupts the common control flow
of a C program: goto. As you hopefully remember from subsection 14.5, this is imple-
mented with two constructs: labels mark positions in the code, and goto statements jump
to these marked positions inside the same function.

We also have seen that such jumps have complicated implications for the lifetime and
visibility of local objects. In particular, there is a difference in the lifetime of objects that
are defined inside loops and inside a set of statements that is repeated by goto.29 Consider
the following two snippets:

1 size_t* ip = 0
2 while(something)
3 ip = &(size_t){ fun() }; /* Life ends with while */
4 /* Good: resource is freed */
5 printf("i␣is␣%d", *ip) /* Bad: object is dead */

versus

1 size_t* ip = 0
2 RETRY:
3 ip = &(size_t){ fun() }; /* Life continues */
4 if (condition) goto RETRY;
5 /* Bad: resource is blocked */
6 printf("i␣is␣%d", *ip) /* Good: object is alive */

Both define a local object in a loop by using a compound literal. The address of that
compound literal is assigned to a pointer, so the object remains accessible outside the loop
and can, for example, be used in a printf statement.

It looks as if they both are semantically equivalent, but they are not. For the first,
the object that corresponds to the compound literal only lives in the scope of the while
statement.

Takeaway 3.17.3.1 Each iteration defines a new instance of a local object.

Therefore, the access to the object in the *ip expression is invalid. When omitting
the printf in the example, the while loop has the advantage that the resources that are
occupied by the compound literal can be reused.

For the second example, there is no such restriction: the scope of the definition of the
compound literal is the whole surrounding block. So the object is alive until that block is
left (takeaway 2.13.3.1). This is not necessarily good: the object occupies resources that
could otherwise be reassigned.

In cases where there is no need for the printf statement (or similar access), the first
snippet is clearer and has better optimization opportunities. Therefore, under most circum-
stances, it is preferable.

Takeaway 3.17.3.2 goto should only be used for exceptional changes in control flow.

28Be aware that library functions that are implemented as macros may not define a sequence point.
29see ISO 9899:2011 6.5.2.5 p16

17. VARIATIONS IN CONTROL FLOW 247

Here, exceptional usually means we encounter a transitional error condition that re-
quires local cleanup, such as we showed in subsection 14.5. But it could also mean specific
algorithmic conditions, as we can see in listing 17.1.

Here, two labels, NEW_LINE and ASCEND, and two macros, LEFT and RIGHT, reflect the
actual state of the parsing. NEW_LINE is a jump target when a new line is to be printed, and
ASCEND is used if a } is encountered or if the stream ended. LEFT and RIGHT are used as
case labels if left or right curly braces are detected.

The reason to have goto and labels here is that both states are detected in two different
places in the function, and at different levels of nesting. In addition, the names of the labels
reflect their purpose and thereby provide additional information about the structure.

17.4. Functions. The function descend has more complications than the twisted lo-
cal jump structure: it also is recursive. As we have seen, C handles recursive functions
quite simply.

Takeaway 3.17.4.1 Each function call defines a new instance of a local object.

So usually, different recursive calls to the same function that are active simultaneously
don’t interact; everybody has their own copy of the program state.

Call

Function return

FIGURE 17.1. Control flow of function calls: return jumps to the next
instruction after the call.

But here, because of the pointers, this principle is weakened. The data to which
buffer and dp point is modified. For buffer, this is probably unavoidable: it will contain
the data that we are reading. But dp could (and should) be replaced by a simple unsigned
argument.[Exs 30] Our implementation only has dp as a pointer because we want to be able
to track the depth of the nesting in case an error occurs. So if we abstract out the calls to
longjmp that we did not yet explain, using such a pointer is bad. The state of the program
is more difficult to follow, and we miss optimization opportunities.[Exs 31]

In our particular example, because dp is restrict qualified and not passed to the calls
to longjump (discussed shortly) and it is only incremented at the beginning and decre-
mented at the end, dp[0] is restored to its original value just before the return from the
function. So, seen from the outside, it appears that descend doesn’t change that value at
all.

If the function code of descend is visible on the call side, a good optimizing compiler
can deduce that dp[0] did not change through the call. If longjmp weren’t special, this
would be a nice optimization opportunity. Shortly we will see how the presence of longjmp
invalidates this optimization and leads to a subtle bug.

17.5. Long jumps. Our function descend may also encounter exceptional conditions
that cannot be repaired. We use an enumeration type to name them. Here, eofOut is
reached if stdout can’t be written, and interrupted refers to an asynchronous signal that
our running program received. We will discuss this concept later:

[Exs 30]Change descend such that it receives an unsigned depth instead of a pointer.
[Exs 31]Compare the assembler output of the initial version against your version without dp pointer.

248 3. EXPERIENCE

1
0

Normal execution

Special case

longjmp

setjmp

FIGURE 17.2. Control flow with setjmp and longjmp: longjmp jumps
to the position marked by setjmp.

. basic_blocks.c

32 /**
33 ** @brief Exceptional states of the parse algorithm
34 **/
35 enum state {
36 execution = 0, //*< Normal execution
37 plusL , //*< Too many left braces
38 plusR , //*< Too many right braces
39 tooDeep , //*< Nesting too deep to handle
40 eofOut , //*< End of output
41 interrupted , //*< Interrupted by a signal
42 };

We use the function longjmp to deal with these situations, and we put the correspond-
ing calls directly at the place in the code where we recognize that such a condition is
reached:

• tooDeep is easily recognized at the beginning of the function.
• plusL can be detected when we encounter the end of the input stream while we

are not at the first recursion level.
• plusR occurs when we encounter a closing } while we are at the first recursion

level.
• eofOut is reached if a write to stdout returned an end of file (EOF) condition.
• and interrupted is checked before each new line that is read from stdin.

Since stdout is line-buffered, we only check for eofOut when we write the '\n'
character. This happens inside the short function end_line:

. basic_blocks.c

48 char const* end_line(char const* s, jmp_buf jmpTarget) {
49 if (putchar('\n') == EOF) longjmp(jmpTarget , eofOut);
50 return skipspace(s);
51 }

The function longjmp comes with a companion macro setjmp that is used to establish
a jump target to which a call of longjmp may refer. The header setjmp.h provides the<setjmp.h>

following prototypes:

_Noreturn void longjmp(jmp_buf target , int condition);
int setjmp(jmp_buf target); // Usually a macro , not a function

The function longjmp also has the _Noreturn property, so we are assured that once
we detect one of the exceptional conditions, execution of the current call to descend will
never continue.

Takeaway 3.17.5.1 longjmp never returns to the caller.

17. VARIATIONS IN CONTROL FLOW 249

This is valuable information for the optimizer. In descend, longjmp is called in five
different places, and the compiler can substantially simplify the analysis of the branches.
For example, after the !act tests, it can be assumed that act is non-null on entry to the
for loop.

Normal syntactical labels are only valid goto targets within the same function as they
are declared. In contrast to that, a jmp_buf is an opaque object that can be declared any-
where and that can be used as long as it is alive and its contents are valid. In descend, we
use just one jump target of type jmp_buf, which we declare as a local variable. This jump
target is set up in the base function basic_blocks that serves as an interface to descend;
see listing 17.2. This function mainly consists of one big switch statement that handles all
the different conditions.

The 0 branch of that switch is taken when we come here through the normal control
flow. This is one of the basic principles for setjmp.

Takeaway 3.17.5.2 When reached through normal control flow, a call to setjmp marks
the call location as a jump target and returns 0.

As we said, jmpTarget must be alive and valid when we call longjmp. So for an auto
variable, the scope of the declaration of the variable must not have been left; otherwise it
would be dead. For validity, all of the context of the setjmp must still be active when we
call longjmp. Here, we avoid complications by having jmpTarget declared in the same
scope as the call to setjmp.

Takeaway 3.17.5.3 Leaving the scope of a call to setjmp invalidates the jump target.

Once we enter case 0 and call descend, we may end up in one of the exceptional con-
ditions and call longjmp to terminate the parse algorithm. This passes control back to the
call location that was marked in jmpTarget, as if we just returned from the call to setjmp.
The only visible difference is that now the return value is the condition that we passed as
a second argument to longjmp. If, for example, we encountered the tooDeep condition at
the beginning of a recursive call to descend and called longjmp(jmpTarget, tooDeep),
we jump back to the controlling expression of the switch and receive the return value of
tooDeep. Execution then continues at the corresponding case label.

Takeaway 3.17.5.4 A call to longjmp transfers control directly to the position that was
set by setjmp as if that had returned the condition argument.

Be aware, though, that precautions have been taken to make it impossible to cheat and
to retake the normal path a second time.

Takeaway 3.17.5.5 A 0 as a condition parameter to longjmp is replaced by 1.

The setjmp/longjmp mechanism is very powerful and can avoid a whole cascade of
returns from functions calls. In our example, if we allow the maximal depth of nesting
of the input program of 30, say, the detection of the tooDeep condition will happen when
there are 30 active recursive calls to descend. A regular error-return strategy would return
to each of these and do some work on each level. A call to longjmp allows us to shorten
all these returns and proceed the execution directly in the switch of basic_blocks.

Because setjmp/longjmp is allowed to make some simplifying assumptions, this
mechanism is surprisingly efficient. Depending on the processor architecture, it usually
needs no more than 10 to 20 assembler instructions. The strategy followed by the library
implementation is usually quite simple: setjmp saves the essential hardware registers, in-
cluding stack and instruction pointers, in the jmp_buf object, and longjmp restores them
from there and passes control back to the stored instruction pointer.32

32For the vocabulary of this you might want to read or re-read subsection 13.5.

250 3. EXPERIENCE

LISTING 17.2. The user interface for the recursive descent parser

100 void basic_blocks(void) {
101 char buffer[maxline];
102 unsigned depth = 0;
103 char const* format =
104 "All␣%0.0d%c␣%c␣blocks␣have␣been␣closed␣correctly\n";
105 jmp_buf jmpTarget;
106 switch (setjmp(jmpTarget)) {
107 case 0:
108 descend(0, &depth , maxline , buffer , jmpTarget);
109 break;
110 case plusL:
111 format =
112 "Warning:␣%d␣%c␣%c␣blocks␣have␣not␣been␣closed␣properly\n";
113 break;
114 case plusR:
115 format =
116 "Error:␣closing␣too␣many␣(%d)␣%c␣%c␣blocks\n";
117 break;
118 case tooDeep:
119 format =
120 "Error:␣nesting␣(%d)␣of␣%c␣%c␣blocks␣is␣too␣deep\n";
121 break;
122 case eofOut:
123 format =
124 "Error:␣EOF␣for␣stdout␣at␣nesting␣(%d)␣of␣%c␣%c␣blocks\n";
125 break;
126 case interrupted:
127 format =
128 "Interrupted␣at␣level␣%d␣of␣%c␣%c␣block␣nesting\n";
129 break;
130 default :;
131 format =
132 "Error:␣unknown␣error␣within␣(%d)␣%c␣%c␣blocks\n";
133 }
134 fflush(stdout);
135 fprintf(stderr , format , depth , LEFT , RIGHT);
136 if (interrupt) {
137 SH_PRINT(stderr , interrupt ,
138 "is␣somebody␣trying␣to␣kill␣us?");
139 raise(interrupt);
140 }
141 }

One of the simplifications setjmp makes is about its return. Its specification says it
returns an int value, but this value cannot be used inside arbitrary expressions.

Takeaway 3.17.5.6 setjmp may be used only in simple comparisons inside controlling
expression of conditionals.

So it can be used directly in a switch statement, as in our example, and it can be tested
for ==, <, and so on, but the return value of setjmp may not be used in an assignment. This
guarantees that the setjmp value is only compared to a known set of values, and the change
in the environment when returning from longjmp may just be a special hardware register
that controls the effect of conditionals.

17. VARIATIONS IN CONTROL FLOW 251

As we said, this saving and restoring of the execution environment by the setjmp call
is minimal. Only a minimal necessary set of hardware registers is saved and restored. No
precautions are taken to get local optimizations in line or even to take into account that the
call location may be visited a second time.

Takeaway 3.17.5.7 Optimization interacts badly with calls to setjmp.

If you execute and test the code in the example, you will see that there actually is a
problem in our simple usage of setjmp. If we trigger the plusL condition by feeding a
partial program with a missing closing }, we would expect the diagnostic to read something
like

Terminal

0 Warning: 3 { } blocks have not been closed properly

Depending on the optimization level of your compilation, instead of the 3, you will
most probably see a 0, independent of the input program. This is because the optimizer
does an analysis based on the assumption that the switch cases are mutually exclusive.
It only expects the value of depth to change if execution goes through case 0 and thus
the call of descend. From inspection of descend (see subsection 17.4), we know that the
value of depth is always restored to its original value before return, so the compiler may
assume that the value doesn’t change through this code path. Then, none of the other cases
changes depth, so the compiler can assume that depth is always 0 for the fprintf call.

As a consequence, optimization can’t make correct assumptions about objects that are
changed in the normal code path of setjmp and referred to in one of the exceptional paths.
There is only one recipe against that.

Takeaway 3.17.5.8 Objects that are modified across longjmp must be volatile.

Syntactically, the qualifier volatile applies similar to the other qualifiers const and
restrict that we have encountered. If we declare depth with that qualifier

unsigned volatile depth = 0;

and amend the prototype of descend accordingly, all accesses to this object will use the
value that is stored in memory. Optimizations that try to make assumptions about its value
are blocked out.

Takeaway 3.17.5.9 volatile objects are reloaded from memory each time they are ac-
cessed.

Takeaway 3.17.5.10 volatile objects are stored to memory each time they are modi-
fied.

So volatile objects are protected from optimization, or, if we look at it negatively,
they inhibit optimization. Therefore, you should only make objects volatile if you really
need them to be.[Exs 33]

Finally, note some subtleties of the jmp_buf type. Remember that it is an opaque type:
you should never make assumptions about its structure or its individual fields.

[Exs 33]Your version of descend that passes depth as a value might not propagate the depth correctly if it encoun-
ters the plusL condition. Ensure that it copies that value to an object that can be used by the fprintf call in
basic_blocks.

252 3. EXPERIENCE

Takeaway 3.17.5.11 The typedef for jmp_buf hides an array type.

And because it is an opaque type, we don’t know anything about the base type,
jmp_buf_base, say, of the array. Thus:

• An object of type jmp_buf cannot be assigned to.
• A jmp_buf function parameter is rewritten to a pointer to jmp_buf_base.
• Such a function always refers to the original object and not to a copy.

In a way, this emulates a pass-by-reference mechanism, for which other programming
languages such as C++ have explicit syntax. Generally, using this trick is not a good
idea: the semantics of a jmp_buf variable depend on being locally declared or on being
a function parameter; for example, in basic_blocks, that variable it is not assignable,
whereas in descend, the analogous function parameter is modifiable because it is rewritten
to a pointer. Also, we cannot use the more-specific declarations from Modern C for the
function parameter that would be adequate, something like

jmp_buf_base jmpTarget[restrict const static 1]

to insist that the pointer shouldn’t be changed inside the function, that it must not be 0,
and that access to it can be considered unique for the function. As of today, we would not
design this type like this, and you should not try to copy this trick for the definition of your
own types.

17.6. Signal handlers. As we have seen, setjmp/longjmp can be used to handle
exceptional conditions that we detect ourselves during the execution of our code. A signal
handler is a tool that handles exceptional conditions that arise differently: that are triggered
by some event that is external to the program. Technically, there are two types of such
external events: hardware interrupts, also referred to as traps or synchronous signals, and
software interrupts or asynchronous signals.

The first occurs when the processing device encounters a severe fault that it cannot
deal with: for example, a division by zero, addressing a non-existent memory bank, or
using a misaligned address in an instruction that operates on a wider integer type. Such
an event is synchronous with the program execution. It is directly caused by a faulting
instruction, so it can always be known at which particular instruction the interrupt was
raised.

The second arises when the operating or runtime system decides that our program
should terminate, because some deadline is exceeded, a user has issued a termination re-
quest, or the world as we know it is going to end. Such an event is asynchronous, because
it can fall in the middle of a multistage instruction, leaving the execution environment in
an intermediate state.

Most modern processors have a built-in feature to handle hardware interrupts: an in-
terrupt vector table. This table is indexed by the different hardware faults that the platform
knows about. Its entries are pointers to procedures, interrupt handlers, that are executed
when the specific fault occurs. So if the processor detects such a fault, execution is auto-
matically switched away from the user code, and an interrupt handler is executed. Such a
mechanism is not portable, because the names and locations of the faults are different from
platform to platform. It is tedious to handle, because to program a simple application, we’d
have to provide all handlers for all interrupts.

C’s signal handlers provide us with an abstraction to deal with both types of interrupts,
hardware and software, in a portable way. They work similarly to what we describe for
hardware interrupts, but

• The names of (some of) the faults are standardized.
• All faults have a default handler (which is mostly implementation defined).
• And (most) handlers can be specialized.

17. VARIATIONS IN CONTROL FLOW 253

In each item of that list, there are parenthetical reservations, because upon a closer look it
appears that C’s interface for signal handlers is quite rudimentary; all platforms have their
extensions and special rules.

Takeaway 3.17.6.1 C’s signal-handling interface is minimal and should only be used
for elementary situations.

The control flow of a handled signal is shown in figure 17.3. The normal control flow
is interrupted at a place that is not foreseeable by the application, a signal handler function
kicks in and performs some tasks, and after that the control resumes at exactly the same
place and state as when it was interrupted.

Signal handler

Interrupt

�

return

FIGURE 17.3. Control flow after an interrupt return jumps to the po-
sition where the interrupt occurred.

The interface is defined in the header signal.h. The C standard distinguishes six <signal.h>

different values, called signal numbers. The following are the exact definitions as given
there. Three of these values are typically caused by hardware interrupts34:
SIGFPE an erroneous arithmetic operation, such as zero divide

or an operation resulting in overflow

SIGILL detection of an invalid function image, such as an

invalid instruction

SIGSEGV an invalid access to storage

The other three are usually triggered by software or users:
SIGABRT abnormal termination, such as is initiated by the abort

function

SIGINT receipt of an interactive attention signal

SIGTERM a termination request sent to the program

A specific platform will have other signal numbers; the standard reserves all identifiers
starting with SIG for that purpose. Their use is undefined as of the C standard, but as such
there is nothing bad about it. Undefined here really means what it says: if you use it, it has
to be defined by some other authority than the C standard, such as your platform provider.
Your code becomes less portable as a consequence.

There are two standard dispositions for handling signals, both also represented by
symbolic constants. SIG_DFL restores the platform’s default handler for the specific signal,
and SIG_IGN indicates that the signal is to be ignored. Then, the programmer may write
their own signal handlers. The handler for our parser looks quite simple:

. basic_blocks.c

143 /**
144 ** @brief A minimal signal handler
145 **

34Called computational exceptions by the standard.

254 3. EXPERIENCE

146 ** After updating the signal count , for most signals this
147 ** simply stores the signal value in "interrupt" and returns.
148 **/
149 static void signal_handler(int sig) {
150 sh_count(sig);
151 switch (sig) {
152 case SIGTERM: quick_exit(EXIT_FAILURE);
153 case SIGABRT: _Exit(EXIT_FAILURE);
154 #ifdef SIGCONT
155 // continue normal operation
156 case SIGCONT: return;
157 #endif
158 default:
159 /* reset the handling to its default */
160 signal(sig , SIG_DFL);
161 interrupt = sig;
162 return;
163 }
164 }

As you can see, such a signal handler receives the signal number sig as an argument
and switches according to that number. Here we have provisions for signal numbers
SIGTERM and SIGABRT. All other signals are just handled by resetting the handler for
that number to its default, storing the number in our global variable interrupt, and then
returning to the point where the interrupt occurred.

The type of a signal handler has to be compatible with the following:35

. sighandler.h

71 /**
72 ** @brief Prototype of signal handlers
73 **/
74 typedef void sh_handler(int);

That is, it receives a signal number as an argument and doesn’t return anything. As
such, this interface is quite limited and does not allow us to pass enough information, in
particular none about the location and circumstances for which the signal occurred.

Signal handlers are established by a call to signal, as we saw in our function signal_handler.
Here, it is just used to reset the signal disposition to the default. signal is one of the two
function interfaces that are provided by signal.h:<signal.h>

sh_handler* signal(int , sh_handler *);
int raise(int);

The return value of signal is the handler that was previously active for the signal, or the
special value SIG_ERR if an error occurred. Inside a signal handler, signal should only be
used to change the disposition of the same signal number that was received by the call. The
following function has the same interface as signal but provides a bit more information
about the success of the call:

. sighandler.c

92 /**
93 ** @ brief Enables a signal handler and catches the errors
94 **/
95 sh_handler* sh_enable(int sig , sh_handler* hnd) {
96 sh_handler* ret = signal(sig , hnd);
97 if (ret == SIG_ERR) {

35There is no such type defined by the standard, though.

17. VARIATIONS IN CONTROL FLOW 255

98 SH_PRINT(stderr , sig , "failed");
99 errno = 0;

100 } else if (ret == SIG_IGN) {
101 SH_PRINT(stderr , sig , "previously␣ignored");
102 } else if (ret && ret != SIG_DFL) {
103 SH_PRINT(stderr , sig , "previously␣set␣otherwise");
104 } else {
105 SH_PRINT(stderr , sig , "ok");
106 }
107 return ret;
108 }

The main function for our parser uses this in a loop to establish signal handlers for all
signal numbers that it can:

. basic_blocks.c

187 // Establishes signal handlers
188 for (unsigned i = 1; i < sh_known; ++i)
189 sh_enable(i, signal_handler);

As an example, on my machine this provides the following information at the startup
of the program:

Terminal

0 sighandler.c:105: #1 (0 times), unknown signal number, ok

1 sighandler.c:105: SIGINT (0 times), interactive attention signal, ok

2 sighandler.c:105: SIGQUIT (0 times), keyboard quit, ok

3 sighandler.c:105: SIGILL (0 times), invalid instruction, ok

4 sighandler.c:105: #5 (0 times), unknown signal number, ok

5 sighandler.c:105: SIGABRT (0 times), abnormal termination, ok

6 sighandler.c:105: SIGBUS (0 times), bad address, ok

7 sighandler.c:105: SIGFPE (0 times), erroneous arithmetic operation, ok

8 sighandler.c:98: SIGKILL (0 times), kill signal, failed: Invalid argument

9 sighandler.c:105: #10 (0 times), unknown signal number, ok

10 sighandler.c:105: SIGSEGV (0 times), invalid access to storage, ok

11 sighandler.c:105: #12 (0 times), unknown signal number, ok

12 sighandler.c:105: #13 (0 times), unknown signal number, ok

13 sighandler.c:105: #14 (0 times), unknown signal number, ok

14 sighandler.c:105: SIGTERM (0 times), termination request, ok

15 sighandler.c:105: #16 (0 times), unknown signal number, ok

16 sighandler.c:105: #17 (0 times), unknown signal number, ok

17 sighandler.c:105: SIGCONT (0 times), continue if stopped, ok

18 sighandler.c:98: SIGSTOP (0 times), stop process, failed: Invalid argument

The second function raise can be used to deliver the specified signal to the current
execution. We already used it at the end of basic_blocks to deliver the signal that we had
caught to the preinstalled handler.

The mechanism of signals is similar to setjmp/longjmp: the current state of execution
is memorized, control flow is passed to the signal handler, and a return from there restores
the original execution environment and continues execution. The difference is that there is
no special point of execution that is marked by a call to setjmp.

Takeaway 3.17.6.2 Signal handlers can kick in at any point of execution.

Interesting signal numbers in our case are the software interrupts SIGABRT, SIGTERM,
and SIGINT, which usually can be sent to the application with a magic keystroke such as

256 3. EXPERIENCE

Ctrl-C. The first two will call _Exit and quick_exit, respectively. So if the program re-
ceives these signals, execution will be terminated: for the first, without calling any cleanup
handlers; and for the second, by going through the list of cleanup handlers that were regis-
tered with at_quick_exit.

SIGINT will choose the default case of the signal handler, so it will eventually return
to the point where the interrupt occurred.

Takeaway 3.17.6.3 After return from a signal handler, execution resumes exactly where
it was interrupted.

If that interrupt had occurred in function descend, it would first continue execution as
if nothing had happened. Only when the current input line is processed and and a new one
is needed will the variable interrupt be checked and execution wound down by calling
longjmp. Effectively, the only difference between the situation before the interrupt and
after is that the variable interrupt has changed its value.

We also have a special treatment of a signal number that is not described by the C
standard, SIGCONT, but on my operating system, POSIX. To remain portable, the use of
this signal number is protected by guards. This signal is meant to continue execution of a
program that was previously stopped: that is, for which execution had been suspended. In
that case, the only thing to do is to return. By definition, we don’t want any modification
of the program state whatsoever.

So another difference from the setjmp/longjmp mechanism is that for it, the return
value of setjmp changed the execution path. A signal handler, on the other hand, is not
supposed to change the state of execution. We have to invent a suitable convention to trans-
fer information from the signal handler to the normal program. As for longjmp, objects
that are potentially changed by a signal handler must be volatile qualified: the com-
piler cannot know where interrupt handlers may kick in, and thus all its assumptions about
variables that change through signal handling can be false.

But signal handlers face another difficulty:

Takeaway 3.17.6.4 A C statement may correspond to several processor instructions.

For example, a double x could be stored in two usual machine words, and a write
(assignment) of x to memory could need two separate assembler statements to write both
halves.

When considering normal program execution as we have discussed so far, splitting a
C statement into several machine statements is no problem. Such subtleties are not directly
observable.36 With signals, the picture changes. If such an assignment is split in the middle
by the occurrence of a signal, only half of x is written, and the signal handler will see an
inconsistent version of it. One half corresponds to the previous value, the other to the new
one. Such a zombie representation (half here, half there) may not even be a valid value for
double.

Takeaway 3.17.6.5 Signal handlers need types with uninterruptible operations.

Here, the term uninterruptible operation refers to an operation that always appears to
be indivisible in the context of signal handlers: either it appears not to have started or it
appears to be completed. This doesn’t generally mean that it is undivided, just that we
will not be able to observe such a division. The runtime system might have to force that
property when a signal handler kicks in.

C has three different classes of types that provide uninterruptible operations:

36They are only observable from outside the program because such a program may take more time than
expected.

17. VARIATIONS IN CONTROL FLOW 257

(1) The type sig_atomic_t, an integer type with a minimal width of 8 bits
(2) The type atomic_flag
(3) All other atomic types that have the lock-free property

The first is present on all historical C platforms. Its use to store a signal number as in our
example for variable interrupt is fine, but otherwise its guarantees are quite restricted.
Only memory-load (evaluation) and store (assignment) operations are known to be unin-
terruptible; other operations aren’t, and the width may be quite limited.

Takeaway 3.17.6.6 Objects of type sig_atomic_t should not be used as counters.

This is because a simple ++ operation might effectively be divided in three (load,
increment, and store) and because it might easily overflow. The latter could trigger a
hardware interrupt, which is really bad if we already are inside a signal handler.

The latter two classes were only introduced by C11 for the prospect of threads (see
subsection 18) and are only present if the feature test macro __STDC_NO_ATOMICS__ has
not been defined by the platform and if the header stdatomic.h has been included. The <stdatomic.h>

function sh_count uses these features, and we will see an example for this later.
Because signal handlers for asynchronous signals should not access or change the

program state in an uncontrolled way, they cannot call other functions that would do so.
Functions that can be used in such a context are called asynchronous signal safe. Generally,
it is difficult to know from an interface specification whether a function has this property,
and the C standard guarantees it for only a handful of functions:

• The _Noreturn functions abort, _Exit, and quick_exit that terminate the pro-
gram;

• signal for the same signal number for which the signal handler was called
• Some functions that act on atomic objects (discussed shortly)

Takeaway 3.17.6.7 Unless specified otherwise, C library functions are not asynchro-
nous signal safe.

So by the C standard itself, a signal handler cannot call exit or do any form of IO, but it
can use quick_exit and the at_quick_exit handlers to execute some cleanup code.

As already noted, C’s specifications for signal handlers are minimal, and often a spe-
cific platform will allow for more. Therefore, portable programming with signals is te-
dious, and exceptional conditions should generally be dealt with in a cascade, as we have
seen in our examples:

(1) Exceptional conditions that can be detected and handled locally can be dealt with
by using goto for a limited number of labels.

(2) Exceptional conditions that need not or cannot be handled locally should be re-
turned as a special value from functions whenever this is possible, such as re-
turning a null pointer instead of a pointer to an object.

(3) Exceptional conditions that change the global program state can be handled with
setjmp/longjmp if an exceptional return would be expensive or complex.

(4) Exceptional conditions that result in a signal being raised can be caught by a
signal handler, but should be handled after the return of the handler in the normal
flow of execution.

Since even the list of signals that the C standard specifies is minimal, dealing with
the different possible conditions becomes complicated. The following shows how we can
handle a collection of signal numbers that goes beyond those that are specified in the C
standard:

258 3. EXPERIENCE

. sighandler.c

7 #define SH_PAIR(X, D) [X] = { .name = #X, .desc = "" D "", }
8
9 /**

10 ** @brief Array that holds names and descriptions of the
11 ** standard C signals
12 **
13 ** Conditionally , we also add some commonly used signals.
14 **/
15 sh_pair const sh_pairs [] = {
16 /* Execution errors */
17 SH_PAIR(SIGFPE , "erroneous␣arithmetic␣operation"),
18 SH_PAIR(SIGILL , "invalid␣instruction"),
19 SH_PAIR(SIGSEGV , "invalid␣access␣to␣storage"),
20 #ifdef SIGBUS
21 SH_PAIR(SIGBUS , "bad␣address"),
22 #endif
23 /* Job control */
24 SH_PAIR(SIGABRT , "abnormal␣termination"),
25 SH_PAIR(SIGINT , "interactive␣attention␣signal"),
26 SH_PAIR(SIGTERM , "termination␣request"),
27 #ifdef SIGKILL
28 SH_PAIR(SIGKILL , "kill␣signal"),
29 #endif
30 #ifdef SIGQUIT
31 SH_PAIR(SIGQUIT , "keyboard␣quit"),
32 #endif
33 #ifdef SIGSTOP
34 SH_PAIR(SIGSTOP , "stop␣process"),
35 #endif
36 #ifdef SIGCONT
37 SH_PAIR(SIGCONT , "continue␣if␣stopped"),
38 #endif
39 #ifdef SIGINFO
40 SH_PAIR(SIGINFO , "status␣information␣request"),
41 #endif
42 };

where the macro just initializes an object of type sh_pair:

. sighandler.h

10 /**
11 ** @brief A pair of strings to hold signal information
12 **/
13 typedef struct sh_pair sh_pair;
14 struct sh_pair {
15 char const* name;
16 char const* desc;
17 };

The use of #ifdef conditionals ensures that signal names that are not standard can be
used, and the designated initializer within SH_PAIR allows us to specify them in any order.
Then the size of the array can be used to compute the number of known signal numbers for
sh_known:

. sighandler.c

44 size_t const sh_known = (sizeof sh_pairs/sizeof sh_pairs [0]);

17. VARIATIONS IN CONTROL FLOW 259

If the platform has sufficient support for atomics, this information can also be used to
define an array of atomic counters so we can keep track of the number of times a particular
signal was raised:

. sighandler.h

31 #if ATOMIC_LONG_LOCK_FREE > 1
32 /**
33 ** @brief Keep track of the number of calls into a
34 ** signal handler for each possible signal.
35 **
36 ** Don't use this array directly.
37 **
38 ** @see sh_count to update this information.
39 ** @see SH_PRINT to use that information.
40 **/
41 extern _Atomic(unsigned long) sh_counts [];
42
43 /**
44 ** @brief Use this in your signal handler to keep track of the
45 ** number of calls to the signal @a sig.
46 **
47 ** @see sh_counted to use that information.
48 **/
49 inline
50 void sh_count(int sig) {
51 if (sig < sh_known) ++ sh_counts[sig];
52 }
53
54 inline
55 unsigned long sh_counted(int sig){
56 return (sig < sh_known) ? sh_counts[sig] : 0;
57 }

An object that is specified with _Atomic can be used with the same operators as other
objects with the same base type, here the ++ operator. In general, such objects are then
guaranteed to avoid race conditions with other threads (discussed shortly), and they are
uninterruptible if the type has the lock-free property. The latter here is tested with the
feature-test macro ATOMIC_LONG_LOCK_FREE.

The user interfaces here are sh_count and sh_counted. They use the array of counters
if available and are otherwise replaced by trivial functions:

. sighandler.h

59 #else
60 inline
61 void sh_count(int sig) {
62 // empty
63 }
64
65 inline
66 unsigned long sh_counted(int sig){
67 return 0;
68 }
69 #endif

260 3. EXPERIENCE

Summary

• The execution of C code is not always linearly sequenced, even if there are no
parallel threads or asynchronous signals. As a consequence, some evaluations
may have results that depend on ordering choices by the compiler.

• setjmp/longjmp are powerful tools to handle exceptional conditions across a
whole series of nested function calls. They may interact with optimization and
require that some variables be protected with a volatile qualification.

• C’s interface of handling synchronous and asynchronous signals is rudimentary.
Therefore, signal handlers should do as little work as possible and just mark the
type of the interrupt condition in a global flag. They should then switch back to
the interrupted context and handle the interrupt condition there.

• Information can only be passed to and from signal handlers by using volatile
sig_atomic_t, atomic_flag, or other lock-free atomic data types.

18. THREADS 261

18. Threads

This section covers

• Inter-thread control
• Initializing and destroying threads
• Working with thread-local data
• Critical data and critical sections
• Communicating through condition variables

Threads are another variation of control flow that allow us to pursue several tasks
concurrently. Here, a task is a part of the job that is to be executed by a program such that
different tasks can be done with no or little interaction between each other.

Our main example for this will be a primitive game that we call B9 that is a variant
of Conway’s game of life (see Gardner [1970]). It models a matrix of primitive “cells”
that are born, live, and die according to very simple rules. We divide the game into four
different tasks, each of which proceeds iteratively. The cells go through life cycles that
compute birth or death events for all cells. The graphical presentation in the terminal goes
through drawing cycles, which are updated as fast as the terminal allows. Spread between
these are user keystrokes that occur irregularly and that allow the user to add cells at chosen
positions. Figure 18.1 shows a schematic view of these tasks for B9.

thrd_create thrd_join

account_thread

input_thread

draw_thread

update_thread

return

return

return

return

main

FIGURE 18.1. Control flow of the five threads of B9

The four tasks are:

Draw: Draws a pictures of cell matrix to the terminal; see Fig. 18.2
Input: Captures the keystrokes, updates the cursor position, and creates cells
Update: Updates the state of the game from one life cycle to the next
Account: Is tightly coupled with the update task and counts the number of living neigh-

boring cells of each cell

Each such task is executed by a thread that follows its own control flow, much like a
simple program of its own. If the platform has several processors or cores, these threads
may be executed simultaneously. But even if the platform does not have this capacity, the
system will interleave the execution of the threads. The execution as a whole will appear
to the user as if the events that are handled by the tasks are concurrent. This is crucial for
our example, since we want the game to appear to continue constantly whether the player
presses keys on the keyboard or not.

Threads in C are dealt with through two principal function interfaces that can be used
to start a new thread and then wait for the termination of such a thread:

#include <threads.h>
typedef int (* thrd_start_t)(void*);
int thrd_create(thrd_t*, thrd_start_t , void*);
int thrd_join(thrd_t , int *);

262 3. EXPERIENCE

FIGURE 18.2. A screenshot of B9 showing several cells and the cursor position

Here the second argument of thrd_create is a function pointer of type thrd_start_t.
This function is executed at the start of the new thread. As we can see from the typedef
the function receives a void* pointer and returns an int. The type thrd_t is an opaque
type, which will identify the newly created thread.

In our example, four calls in main to thrd_create create the four threads that corre-
spond to the different tasks. These execute concurrently to the original thread of main. At
the end, main waits for the four threads to terminate; it joins them. The four threads reach
their termination simply when they return from the initial function with which they were
started. Accordingly, our four functions are declared as

static int update_thread(void*);
static int draw_thread(void*);
static int input_thread(void*);
static int account_thread(void*);

These four functions are launched in threads of their own by our main, and all four receive
a pointer to an object of type life that holds the state of the game:

. B9.c

201 /* Create an object that holds the game's data. */
202 life L = LIFE_INITIALIZER;
203 life_init (&L, n0, n1, M);
204 /* Creates four threads that all operate on that same object
205 and collects their IDs in "thrd" */
206 thrd_t thrd [4];
207 thrd_create (&thrd[0], update_thread , &L);
208 thrd_create (&thrd[1], draw_thread , &L);
209 thrd_create (&thrd[2], input_thread , &L);
210 thrd_create (&thrd[3], account_thread , &L);
211 /* Waits for the update thread to terminate */

18. THREADS 263

212 thrd_join(thrd[0], 0);
213 /* Tells everybody that the game is over */
214 L.finished = true;
215 ungetc('q', stdin);
216 /* Waits for the other threads */
217 thrd_join(thrd[1], 0);
218 thrd_join(thrd[2], 0);
219 thrd_join(thrd[3], 0);

The simplest of the four thread functions is account_thread. As its interface only
receives a void*, its first action is to reinterpret it as a life pointer and then to enter a
while loop until its work is finished:

. B9.c

99 int account_thread(void* Lv) {
100 life*restrict L = Lv;
101 while (!L->finished) {
102 // Blocks until there is work

. B9.c

117 return 0;
118 }

The core of that loop calls a specific function for the task, life_account, and then
checks whether, from its point of view, the game should be finished:

. B9.c

108 life_account(L);
109 if ((L->last + repetition) < L->accounted) {
110 L->finished = true;
111 }
112 // ^^^

Here the condition for termination is whether the game had previously entered the
same sequence of repetition game configurations.

The implementations of the other three functions are similar. All reinterpret their
argument to be a pointer to life and enter a processing loop until they detect that the
game has finished. Then, inside the loop, they have relatively simple logic to fulfill their
specific task for this specific iteration. For example, draw_thread’s inner part looks like
this:

. B9.c

79 if (L->n0 <= 30) life_draw(L);
80 else life_draw4(L);
81 L->drawn ++;
82 // ^^^

18.1. Simple inter-thread control. We already have seen two different tools for a
control between threads. First, thrd_join allows a thread to wait until another one is
finished. We saw this when our main joined the four other threads. This ensures that this
main thread effectively only terminates when all other threads have done so, and so the
program execution stays alive and consistent until the last thread is gone.

The other tool was the member finished of life. This member holds a bool that
has a value that is true whenever one of the threads detects a condition that terminates the
game.

264 3. EXPERIENCE

Similar to signal handlers, the simultaneous conflicting action of several threads on
shared variables must be handled very carefully.

Takeaway 3.18.1.1 If a thread T0 writes a non-atomic object that is simultaneously read
or written by another thread T1, the behavior of the execution becomes
undefined.

In general, it will even be difficult to establish what simultaneously should mean when we
talk about different threads (as discussed shortly). Our only chance to avoid such situations
is to rule out all potential conflicting accesses. If there is such a potential simultaneous
unprotected access, we speak of a race condition.

In our example, unless we take specific precautions, even an update of a bool such
as finished can be divisible between different threads. If two threads access it in an
interleaved way, an update may mix things up and lead to an undefined program state. The
compiler cannot know whether a specific object can be subject to a race condition, and
therefore we have to tell it explicitly. The simplest way to do so is by using a tool that we
also saw with signal handlers: atomics. Here, our life structure has several members that
are specified with _Atomic:

. life.h

40 // Parameters that will dynamically be changed by
41 // different threads
42 _Atomic(size_t) constellations; //< Constellations visited
43 _Atomic(size_t) x0; //< Cursor position , row
44 _Atomic(size_t) x1; //< Cursor position , column
45 _Atomic(size_t) frames; //< FPS for display
46 _Atomic(bool) finished; //< This game is finished.

Access to these members is guaranteed to be atomic. Here, this is the member finished
that we already know, and some other members that we use to communicate between input
and draw, in particular the current position of the cursor.

Takeaway 3.18.1.2 In view of execution in different threads, standard operations on
atomic objects are indivisible and linearizable.

Here, linearizability ensures that we can also argue with respect to the ordering of
computations in two different threads. For our example, if a thread sees that finished is
modified (set to true), it knows that the thread setting it has performed all the actions that
it is supposed to do. In that sense, linearizability extends the merely syntactical properties
of sequencing (subsection 17.2) to threads.

So operations on atomic objects also help us to determine which parts of our threads
are not executed simultaneously, such that no race conditions may occur between them.
Later, in subsection 19.1, we will see how this can be formalized into the happened-before
relation.

Because atomic objects differ semantically from normal objects, the primary syntax
to declare them is an atomic specifier: as we have seen, the keyword _Atomic followed
by parentheses containing the type from which the atomic is derived. There is also an-
other syntax that uses _Atomic as an atomic qualifier similar to the other qualifiers const,
volatile, and restrict. In the following specifications, the two different declarations of
A and B are equivalent:

extern _Atomic(double (*) [45]) A;
extern double (* _Atomic A)[45];
extern _Atomic(double) (*B)[45];
extern double _Atomic (*B)[45];

18. THREADS 265

They refer to the same objects A, an atomic pointer to an array of 45 double elements, and
B, a pointer to an array of 45 atomic double elements.

The qualifier notation has a pitfall: it might suggest similarities between _Atomic
qualifiers and other qualifiers, but in fact these do not go very far. Consider the following
example with three different “qualifiers”:

double var;
// Valid: adding const qualification to the pointed-to type
extern double const* c = &var;
// Valid: adding volatile qualification to the pointed-to type
extern double volatile* v = &var;
// Invalid: pointers to incompatible types
extern double _Atomic* a = &var;

So it is preferable not to fall into the habit of seeing atomics as qualifiers.

Takeaway 3.18.1.3 Use the specifier syntax _Atomic(T) for atomic declarations.

Another restriction for _Atomic is that it cannot be applied to array types:

_Atomic(double [45]) C; // Invalid: atomic cannot be applied to arrays.
_Atomic(double) D[45]; // Valid: atomic can be applied to array base

.

Again, this differs from similarly “qualified” types:

typedef double darray [45];
// Invalid: atomic cannot be applied to arrays.
darray _Atomic E;
// Valid: const can be applied to arrays.
darray const F = { 0 }; // Applies to base type
double const F[45]; // Compatible declaration

Takeaway 3.18.1.4 There are no atomic array types.

Later on in this section, we will also see another tool that ensures linearizability:
mtx_t. But atomic objects are by far the most efficient and easy to use.

Takeaway 3.18.1.5 Atomic objects are the privileged tool to force the absence of race
conditions.

18.2. Race-free initialization and destruction. For any data that is shared by threads,
it is important that it is initially set into a well-controlled state before any concurrent access
is made, and that it is never accessed after it eventually has been destroyed. For initializa-
tion, there are several possibilities, presented here in order of preference:

(1) Shared objects with static storage duration are initialized before any execution.
(2) Shared objects with automatic or allocated storage duration can be properly ini-

tialized by the thread that creates them before any shared access occurs.
(3) Shared objects with static storage duration where the information for dynamic

initialization is
(a) Available at startup time should be initialized by main before any other

thread is created.
(b) Not available at startup time must be initialized with call_once.

So the latter, call_once, is only needed under very special circumstances:

void call_once(once_flag* flag , void cb(void));

266 3. EXPERIENCE

Similar to atexit, call_once registers a callback function cb that should be called
at exactly one point of the execution. The following gives a basic example of how this is
supposed to be used:

/* Interface */
extern FILE* errlog;
once_flag errlog_flag;
extern void errlog_fopen(void);

/* Incomplete implementation; discussed shortly */
FILE* errlog = 0;
once_flag errlog_flag = ONCE_FLAG_INIT;
void errlog_fopen(void) {

srand(time());
unsigned salt = rand();
static char const format [] = "/tmp/error-\%#X.log"
char fname [16 + sizeof format];
snprintf(fname , sizeof fname , format , salt);
errlog = fopen(fname , "w");
if (errlog) {

setvbuf(errlog , 0, _IOLBF , 0); // Enables line buffering
}

}

/* Usage */

/* ... inside a function before any use ... */
call_once (& errlog_flag , errlog_fopen);
/* ... now use it ... */
fprintf(errlog , "bad ,␣we␣have␣weird␣value␣\%g!\n", weird);

Here we have a global variable (errlog) that needs dynamic initialization (calls to time,
srand, rand, snprintf, fopen, and setvbuf) for its initialization. Any usage of that
variable should be prefixed with a call to call_once that uses the same once_flag (here,
errlog_flag) and the same callback function (here, errlog_fopen).

So in contrast to atexit, the callback is registered with a specific object, namely one
of type once_flag. This opaque type guarantees enough state to

• Determine whether a specific call to call_once is the very first among all threads
• Only call the callback then
• Never call the callback again
• Hold back all other threads until the one-and-only call to the callback has termi-

nated
Thus, any using thread can be sure that the object is correctly initialized without over-
writing an initialization that another thread might have effected. All stream functions (but
fopen and fclose) are race-free.

Takeaway 3.18.2.1 A properly initialized FILE* can be used race-free by several threads.

Here, race-free only means your program will always be in a well-defined state; it
does not mean your file may not contain garbled output lines originating from different
threads. To avoid that, you’d have to make sure a call to fprintf or similar always prints
an entire line.

Takeaway 3.18.2.2 Concurrent write operations should print entire lines at once.

Race-free destruction of objects can be much more subtle to organize, because the
access to data for initialization and destruction is not symmetric. Whereas it often is easy
to determine at the beginning of the lifetime of an object that (and when) there is a single

18. THREADS 267

user, seeing whether there are still other threads that use an object is difficult if we do not
keep track of it.

Takeaway 3.18.2.3 Destruction and deallocation of shared dynamic objects needs a lot
of care.

Imagine your precious hour-long execution that crashes just before the end, when it
tries to write its findings into a file.

In our B9 example, we had a simple strategy to ensure that the variable L could be
safely used by all created threads. It was initialized before all threads were created, and it
only ceased to exist after all created threads were joined.

For the once_flag example, variable errlog, it is not so easy to see when we should
close the stream from within one of our threads. The easiest way is to wait until we are
sure there are no other threads around, when we are exiting the entire program execution:

/* Complete implementation */
FILE* errlog = 0;
static void errlog_fclose(void) {

if (errlog) {
fputs("***␣closing␣log␣***", errlog);
fclose(errlog);

}
}

once_flag errlog_flag = ONCE_FLAG_INIT;
void errlog_fopen(void) {

atexit(errlog_fclose);
...

This introduces another callback (errlog_fclose) that ensures that a last message is
printed to the file before closing it. To ensure that this function is executed on program
exit, it is registered with atexit as soon as the initializing function errlog_fopen is en-
tered.

18.3. Thread-local data. The easiest way to avoid race conditions is to strictly sepa-
rate the data that our threads access. All other solutions, such as the atomics we have seen
previously and the mutexes and condition variables that we will see later, are much more
complex and much more expensive. The best way to access data local to threads is to use
local variables:

Takeaway 3.18.3.1 Pass thread-specific data through function arguments.

Takeaway 3.18.3.2 Keep thread-specific state in local variables.

In case this is not possible (or maybe too complicated), a special storage class and a
dedicated data type allow us to handle thread-local data. _Thread_local is a storage class
specifier that forces a thread-specific copy of the variable that is declared as such. The
header threads.h also provides a macro thread_local, which expands to the keyword. <threads.h>

Takeaway 3.18.3.3 A thread_local variable has one separate instance for each thread.

That is, thread_local variables must be declared similar to variables with static stor-
age duration: they are declared in file scope, or, if not, they must additionally be declared
static (see subsection 13.2, table 13.1). As a consequence, they cannot be initialized
dynamically.

268 3. EXPERIENCE

Takeaway 3.18.3.4 Use thread_local if initialization can be determined at compile
time.

If a storage class specifier is not sufficient because we have to do dynamic initialization
and destruction, we can use thread-specific storage, tss_t. It abstracts the identification
of thread-specific data into an opaque ID, referred to as key, and accessor functions to set
or get the data:

void* tss_get(tss_t key); // Returns a pointer to an object
int tss_set(tss_t key , void *val); // Returns an error indication

The function that is called at the end of a thread to destroy the thread-specific data is
specified as a function pointer of type tss_dtor_t when the key is created:

typedef void (* tss_dtor_t)(void*); // Pointer to a destructor
int tss_create(tss_t* key , tss_dtor_t dtor); // Returns an error

indication
void tss_delete(tss_t key);

18.4. Critical data and critical sections. Other parts of the life structure cannot be
protected as easily. They correspond to larger data, such as the board positions of the game.
Perhaps you remember that arrays may not be specified with _Atomic; and even if we were
able to do so using some tricks, the result would not be very efficient. Therefore, we not
only declare the members Mv (for the game matrix) and visited (to hash already-visited
constellations) but also a special member mtx:

. life.h

15 mtx_t mtx; //< Mutex that protects Mv
16 cnd_t draw; //< cnd that controls drawing
17 cnd_t acco; //< cnd that controls accounting
18 cnd_t upda; //< cnd that controls updating
19
20 void*restrict Mv; //< bool M[n0][n1];
21 bool (* visited)[life_maxit]; //< Hashing constellations

This member mtx has the special type mtx_t, a mutex type (for mutual exclusion) that
also comes with threads.h. It is meant to protect the critical data: Mv, while it is accessed<threads.h>

in a well-identified part of the code, a critical section.
The most simple use case for this mutex is in the center of the input thread, listing 18.1

line 145, where two calls, mtx_lock and mtx_unlock, protect the access to the life data
structure L.

This routine is mainly composed of the input loop, which, in turn, contains a big switch
to dispatch on different characters that the user typed into the keyboard. Only two of the
cases need this kind of protection: 'b' and 'B', which trigger the forced “birth” of a 3×3
cluster of cells around the current cursor position. In all other cases, we only interact with
atomic objects, and so we can safely modify these.

The effect of locking and unlocking the mutex is simple. The call to mtx_lock blocks
execution of the calling thread until it can be guaranteed that no other thread is inside a
critical section that is protected by the same mutex. We say that mtx_lock acquires the
lock on the mutex and holds it, and that then mtx_unlock releases it. The use of mtx also
provides linearizability similar to the use of atomic objects, as we saw earlier. A thread
that has acquired a mutex M can rely on the fact that all operations that were done before
other threads released the same mutex M have been effected.

Takeaway 3.18.4.1 Mutex operations provide linearizability.

18. THREADS 269

LISTING 18.1. The input thread function of B9

121 int input_thread(void* Lv) {
122 termin_unbuffered ();
123 life*restrict L = Lv;
124 enum { len = 32, };
125 char command[len];
126 do {
127 int c = getchar ();
128 command [0] = c;
129 switch(c) {
130 case GO_LEFT : life_advance(L, 0, -1); break;
131 case GO_RIGHT: life_advance(L, 0, +1); break;
132 case GO_UP : life_advance(L, -1, 0); break;
133 case GO_DOWN : life_advance(L, +1, 0); break;
134 case GO_HOME : L->x0 = 1; L->x1 = 1; break;
135 case ESCAPE :
136 ungetc(termin_translate(termin_read_esc(len , command)),

stdin);
137 continue;
138 case '+': if (L->frames < 128) L->frames ++; continue;
139 case '-': if (L->frames > 1) L->frames--; continue;
140 case '␣':
141 case 'b':
142 case 'B':
143 mtx_lock (&L->mtx);
144 // VVV
145 life_birth9(L);
146 // ^^^
147 cnd_signal (&L->draw);
148 mtx_unlock (&L->mtx);
149 continue;
150 case 'q':
151 case 'Q':
152 case EOF: goto FINISH;
153 }
154 cnd_signal (&L->draw);
155 } while (!(L->finished || feof(stdin)));
156 FINISH:
157 L->finished = true;
158 return 0;
159 }

C’s mutex lock interfaces are defined as follows:

int mtx_lock(mtx_t *);
int mtx_unlock(mtx_t *);
int mtx_trylock(mtx_t *);
int mtx_timedlock(mtx_t*restrict , const struct timespec*restrict);

The two other calls enable us to test (mtx_trylock) whether another thread already
holds a lock (and thus we may avoid waiting) or to wait (mtx_timedlock) for a maximal
period (and thus we may avoid blocking forever). The latter is allowed only if the mutex
had been initialized as of being of the mtx_timed “type,” as discussed shortly.

There are two other calls for dynamic initialization and destruction:

270 3. EXPERIENCE

int mtx_init(mtx_t*, int);
void mtx_destroy(mtx_t *);

Other than for more-sophisticated thread interfaces, the use of mtx_init is mandatory;
there is no static initialization defined for mtx_t.

Takeaway 3.18.4.2 Every mutex must be initialized with mtx_init.

The second parameter of mtx_init specifies the “type” of the mutex. It must be one
of these four values:

• mtx_plain
• mtx_timed
• mtx_plain|mtx_recursive
• mtx_timed|mtx_recursive

As you probably have guessed, using mtx_plain versus mtx_timed controls the possi-
bility to use mtx_timedlock. The additional property mtx_recursive enables us to call
mtx_lock and similar functions successively several times for the same thread, without
unlocking it beforehand.

Takeaway 3.18.4.3 A thread that holds a nonrecursive mutex must not call any of the
mutex lock functions for it.

The name mtx_recursive indicates that it is mostly used for recursive functions that
call mtx_lock on entry of a critical section and mtx_unlock on exit.

Takeaway 3.18.4.4 A recursive mutex is only released after the holding thread issues as
many calls to mtx_unlock as it has acquired locks.

Takeaway 3.18.4.5 A locked mutex must be released before the termination of the thread.

Takeaway 3.18.4.6 A thread must only call mtx_unlock on a mutex that it holds.

From all of this, we can deduce a simple rule of thumb:

Takeaway 3.18.4.7 Each successful mutex lock corresponds to exactly one call to mtx_unlock.

Depending on the platform, a mutex may bind a system resource that is attributed
each time mtx_init is called. Such a resource can be additional memory (such as a call
to malloc) or some special hardware. Therefore, it is important to release such resources
once a mutex reaches the end of its lifetime.

Takeaway 3.18.4.8 A mutex must be destroyed at the end of its lifetime.

So in particular, mtx_destroy must be called

• Before the scope of a mutex with automatic storage duration ends
• And before the memory of a dynamically allocated mutex is freed

18. THREADS 271

LISTING 18.2. The account thread function of B9

99 int account_thread(void* Lv) {
100 life*restrict L = Lv;
101 while (!L->finished) {
102 // Blocks until there is work
103 mtx_lock (&L->mtx);
104 while (!L->finished && (L->accounted == L->iteration))
105 life_wait (&L->acco , &L->mtx);
106
107 // VVV
108 life_account(L);
109 if ((L->last + repetition) < L->accounted) {
110 L->finished = true;
111 }
112 // ^^^
113
114 cnd_signal (&L->upda);
115 mtx_unlock (&L->mtx);
116 }
117 return 0;
118 }

18.5. Communicating through condition variables. While we have seen that the
input didn’t need much protection against races, the opposite holds for the account task
(see listing 18.2). Its whole job (carried out by the call to life_account) is to scan through
the entire position matrix and to account for the number of life neighbors every position
has.

Similarly, the update and draw threads mainly consist of one critical section inside an
outer loop: see listings 18.3 and 18.4, which perform the action. After that critical section,
we also have a call to life_sleep that suspends the execution for a certain amount of time.
This ensures that these threads are only run with a frequency that corresponds to the frame
rate of our graphics.

In all three threads, the critical section mostly covers the loop body. In addition to
the proper computation, there is first a phase in these critical sections where the thread
is actually paused until new computing is necessary. More precisely, for the accounting
thread, there is a conditional loop that can only be left once either

• The game is finished, or
• Another thread has advanced an iteration count

The body of that loop is a call to life_wait, a function that suspends the calling thread
for one second or until a specific event occurs:

. life.c

18 int life_wait(cnd_t* cnd , mtx_t* mtx) {
19 struct timespec now;
20 timespec_get (&now , TIME_UTC);
21 now.tv_sec += 1;
22 return cnd_timedwait(cnd , mtx , &now);
23 }

Its main ingredient is a call to cnd_timedwait that takes a condition variable of type
cnd_t, a mutex, and an absolute time limit.

Such condition variables are used to identify a condition for which a thread might want
to wait. Here, in our example, you have seen declarations for three such condition variable

272 3. EXPERIENCE

LISTING 18.3. The update thread function of B9

35 int update_thread(void* Lv) {
36 life*restrict L = Lv;
37 size_t changed = 1;
38 size_t birth9 = 0;
39 while (!L->finished && changed) {
40 // Blocks until there is work
41 mtx_lock (&L->mtx);
42 while (!L->finished && (L->accounted < L->iteration))
43 life_wait (&L->upda , &L->mtx);
44
45 // VVV
46 if (birth9 != L->birth9) life_torus(L);
47 life_count(L);
48 changed = life_update(L);
49 life_torus(L);
50 birth9 = L->birth9;
51 L->iteration ++;
52 // ^^^
53
54 cnd_signal (&L->acco);
55 cnd_signal (&L->draw);
56 mtx_unlock (&L->mtx);
57
58 life_sleep (1.0/L->frames);
59 }
60 return 0;
61 }

members of life: draw, acco, and upda. Each of these corresponds to test conditions
that the drawing, the accounting, and the update need in order to proceed to perform their
proper tasks. As we have seen, accounting has

. B9.c

104 while (!L->finished && (L->accounted == L->iteration))
105 life_wait (&L->acco , &L->mtx);

Similarly, update and draw have

. B9.c

42 while (!L->finished && (L->accounted < L->iteration))
43 life_wait (&L->upda , &L->mtx);

and

. B9.c

72 while (!L->finished
73 && (L->iteration <= L->drawn)
74 && (x0 == L->x0)
75 && (x1 == L->x1)) {
76 life_wait (&L->draw , &L->mtx);
77 }

The conditions in each of these loops reflect the cases when there is work to do for the
tasks. Most importantly, we have to be sure not to confound the condition variable, which

18. THREADS 273

LISTING 18.4. The draw thread function of B9

64 int draw_thread(void* Lv) {
65 life*restrict L = Lv;
66 size_t x0 = 0;
67 size_t x1 = 0;
68 fputs(ESC_CLEAR ESC_CLRSCR , stdout);
69 while (!L->finished) {
70 // Blocks until there is work
71 mtx_lock (&L->mtx);
72 while (!L->finished
73 && (L->iteration <= L->drawn)
74 && (x0 == L->x0)
75 && (x1 == L->x1)) {
76 life_wait (&L->draw , &L->mtx);
77 }
78 // VVV
79 if (L->n0 <= 30) life_draw(L);
80 else life_draw4(L);
81 L->drawn ++;
82 // ^^^
83
84 mtx_unlock (&L->mtx);
85
86 x0 = L->x0;
87 x1 = L->x1;
88 // No need to draw too quickly
89 life_sleep (1.0/40);
90 }
91 return 0;
92 }

serves as a sort of identification of the condition, and the condition expression. A call to a
wait function for cnd_t may return although nothing concerning the condition expression
has changed.

Takeaway 3.18.5.1 On return from a cnd_t wait, the expression must be checked again.

Therefore, all our calls to life_wait are placed inside loops that check the condition
expression.

This may be obvious in our example, since we are using cnd_timedwait under the
hood, and the return might just be because the call timed out. But even if we use the
untimed interface for the wait condition, the call might return early. In our example code,
the call might eventually return when the game is over, so our condition expression always
contains a test for L->finished.

cnd_t comes with four principal control interfaces:

int cnd_wait(cnd_t*, mtx_t *);
int cnd_timedwait(cnd_t*restrict , mtx_t*restrict , const struct timespec *

restrict);
int cnd_signal(cnd_t *);
int cnd_broadcast(cnd_t *);

The first works analogously to the second, but there is no timeout, and a thread might
never come back from the call if the cnd_t parameter is never signaled.

274 3. EXPERIENCE

cnd_signal and cnd_broadcast are on the other end of the control. We saw the first
applied in input_thread and account_thread. They ensure that a thread (cnd_signal)
or all threads (cnd_broadcast) that are waiting for the corresponding condition variable
are woken up and return from the call to cnd_wait or cnd_timedwait. For example, the
input task signals the drawing task that something in the game constellation has changed
and the board should be redrawn:

. B9.c

155 } while (!(L->finished || feof(stdin)));

The mtx_t parameter to the wait-condition functions has an important role. The mutex
must be held by the calling thread to the wait function. It is temporarily released during
the wait, so other threads can do their job to assert the condition expression. The lock is
reacquired just before returning from the wait call so then the critical data can safely be
accessed without races.

Figure 18.3 shows a typical interaction between the input and draw threads, the mutex
and the corresponding condition variable. It shows that six function calls are involved in
the interaction: four for the respective critical sections and the mutex, and two for the
condition variable.

L->mtx

L->draw

Draw thread

mtx_lock

mtx_unlock

cnd_signal
mt
x_
lo
ck

cn
d_
wa
it

mt
x_
un
lo
ck

Input thread
Mutex wait

Mutex waitCondition waitMutex wait

FIGURE 18.3. Control flow managed by mutex L->mtx and condition
variable L->draw between the input and draw threads. Critical sections
are shaded with grey. The condition variable is associated with the mutex
until the waiter has reacquired the mutex.

The coupling between a condition variable and the mutex in the wait call should be
handled with care.

Takeaway 3.18.5.2 A condition variable can only be used simultaneously with one mu-
tex.

But it is probably best practice to never change the mutex that is used with a condition
variable.

Our example also shows that there can be many condition variables for the same mu-
tex: we use our mutex with three different condition variables at the same time. This will
be imperative in many applications, since the condition expressions under which threads
will be accessing the same resource depend on their respective roles.

In situations where several threads are waiting for the same condition variable and are
woken up with a call to cnd_broadcast, they will not wake up all at once, but one after
another as they reacquire the mutex.

18. THREADS 275

Similar to a mutex’s, C’s condition variables may bind precious system resources.
So they must be initialized dynamically, and they should be destroyed at the end of their
lifetime.

Takeaway 3.18.5.3 A cnd_t must be initialized dynamically.

Takeaway 3.18.5.4 A cnd_t must be destroyed at the end of its lifetime.

The interfaces for these are straightforward:

int cnd_init(cnd_t *cond);
void cnd_destroy(cnd_t *cond);

18.6. More sophisticated thread management. Having just seen thread creation
and joining in main, we may have the impression that threads are somehow hierarchi-
cally organized. But actually they are not: just knowing the ID of a thread, its thrd_t, is
sufficient to deal with it. There is only one thread with exactly one special property.

Takeaway 3.18.6.1 Returning from main or calling exit terminates all threads.

If we want to terminate main after we have created other threads, we have to take some
precautions so we do not terminate the other threads preliminarily. An example of such a
strategy is given in the following modified version of B9’s main:

. B9-detach.c

210
211 void B9_atexit(void) {
212 /* Puts the board in a nice final picture */
213 L.iteration = L.last;
214 life_draw (&L);
215 life_destroy (&L);
216 }
217
218 int main(int argc , char* argv[argc +1]) {
219 /* Uses command-line arguments for the size of the board */
220 size_t n0 = 30;
221 size_t n1 = 80;
222 if (argc > 1) n0 = strtoull(argv[1], 0, 0);
223 if (argc > 2) n1 = strtoull(argv[2], 0, 0);
224 /* Create an object that holds the game's data. */
225 life_init (&L, n0, n1, M);
226 atexit(B9_atexit);
227 /* Creates four threads that operate on the same object and
228 discards their IDs */
229 thrd_create (&(thrd_t){0}, update_thread , &L);
230 thrd_create (&(thrd_t){0}, draw_thread , &L);
231 thrd_create (&(thrd_t){0}, input_thread , &L);
232 /* Ends this thread nicely and lets the threads go on nicely */
233 thrd_exit (0);
234 }

First, we have to use the function thrd_exit to terminate main. Other than a return,
this ensures that the corresponding thread just terminates without impacting the other
threads. Then, we have to make L a global variable, because we don’t want its life to end
when main terminates. To arrange for the necessary cleanup, we also install an atexit
handler. The modified control flow is shown in figure 18.4.

276 3. EXPERIENCE

thrd_create atexit

input_thread

update_thread

account_thread

B9_atexitreturn

return

return

return

thrd_exitmain

draw_thread

FIGURE 18.4. Control flow of the five threads of B9-detach. The
thread that returns last executes the atexit handlers.

As a consequence of this different management, the four threads that are created are
never actually joined. Each thread that is dead but is never joined eats up some resources
that are kept until the end of the execution. Therefore, it is good coding style to tell the
system that a thread will never be joined: we say that we detach the corresponding thread.
We do that by inserting a call to thrd_detach at the beginning of the thread functions. We
also start the account thread from there, and not from main as we did previously.

. B9-detach.c

38 /* Nobody should ever wait for this thread. */
39 thrd_detach(thrd_current ());
40 /* Delegates part of our job to an auxiliary thread */
41 thrd_create (&(thrd_t){0}, account_thread , Lv);
42 life*restrict L = Lv;

There are six more functions that can be used to manage threads, of which we already
met thrd_current, thrd_exit, and thrd_detach:

thrd_t thrd_current(void);
int thrd_equal(thrd_t , thrd_t);
_Noreturn void thrd_exit(int);

int thrd_detach(thrd_t);
int thrd_sleep(const struct timespec*, struct timespec *);
void thrd_yield(void);

A running C program may have many more threads than it has processing elements
at its disposal. Nevertheless, a runtime system should be able to schedule the threads
smoothly by attributing time slices on a processor. If a thread actually has no work to do, it
should not demand a time slice and should leave the processing resources to other threads
that might need them. This is one of the main features of the control data structures mtx_t
and cnd_t.

Takeaway 3.18.6.2 While blocking on mtx_t or cnd_t, a thread frees processing re-
sources.

If this is not enough, there are two other functions that can suspend execution:
• thrd_sleep allows a thread to suspend its execution for a certain time, such that

hardware resources of the platform can be used by other threads in the meantime.
• thrd_yield just terminates the current time slice and waits for the next process-

ing opportunity.

SUMMARY 277

CHALLENGE 18 (Parallel sorting with threads). Can you implement a parallel algorithm
for sorting using two threads that builds on your merge sort implementation (challenges 1
and 14)?
That is, a merge sort that cuts the input array in half and sorts each half in its own thread,
and then merges the two halves sequentially as before. Use different sequential sorting
algorithms as a base inside each of the two threads.
Can you generalize this parallel sorting to P threads, where P = 2k for k = 1, 2, 3, 4,
where k is given on the command line?
Can you measure the speedup that you obtained as a result of your parallelization? Does
it match the number of cores that your test platform has?

Summary

• It is important to ensure that shared data is properly initialized before it is ac-
cessed concurrently. This is best done at compile time or from main. As a last
resort, call_once can be used to trigger the execution of an initializing function
exactly once.

• Threads should preferably only operate on data that is local, through function
arguments and automatic variables. If unavoidable, thread-specific data can also
be created as thread_local objects or via tss_create. Use the latter only when
you need dynamic construction and destruction of the variable.

• Small critical data that is shared between threads should be specified as _Atomic.
• Critical sections (code paths that operate on unprotected shared data) must be

protected, usually by using a mtx_t mutex.
• Conditional processing dependencies between threads are modeled with cnd_t

condition variables.
• Thread code that does not have the ability to rely on a post mortem cleanup by
main should use thrd_detach and place all its cleanup code in atexit and/or
at_quick_exit handlers.

278 3. EXPERIENCE

19. Atomic access and memory consistency

This section covers
• Understanding the "happened before" relation
• C library calls that provide synchronization
• Maintaining sequential consistency
• Working with other consistency models

We will complete this level with a description of concepts that form an important part
of the C architecture model and are therefore a must for experienced programmers. Try
to comprehend this last section to increase your understanding of how things work, not
necessarily to improve your operational skills. Even though we will not go into all the
glorious details,37 things can get a bit bumpy: please remain seated and buckle up.

If you review the pictures of control flow that we have seen throughout the previous
sections, you see that the interaction of different parts of a program execution can get quite
complicated. We have different levels of concurrent access to data:

• Plain old straightforward C code is only apparently sequential. Visibility of
changes is only guaranteed between very specific points of the execution, se-
quence points, for direct data dependencies, and for the completion of function
calls. Modern platforms take more and more advantage of the provided slack and
perform unsequenced operations intermixed or in parallel in multiple execution
pipelines.

• Long jumps and signal handlers are executed sequentially, but effects of stores
may get lost on the way.

• Those accesses to atomic objects that we have seen so far warrant visibility of
their changes everywhere and consistently.

• Threads run concurrently side by side and jeopardize data consistency if they
don’t regulate their shared access to data. In addition to access to atomic objects,
they can also be synchronized through calls to functions, such as thrd_join or
mtx_lock.

But access to memory is not the only thing a program does. In fact, the abstract state
of a program execution consists of the following:

• Points of execution (one per thread)
• Intermediate values (of computed expressions or evaluated objects)
• Stored values
• Hidden state

Changes to this state are usually described as
Jumps: Change the point of execution (short jumps, long jumps, and function calls)
Value computation: Changes intermediate values
Side effects: Store values or do IO
Or they can affect hidden state such as the lock state of a mtx_t or the initialization state
of a once_flag, or set or clear operations on an atomic_flag.

We summarize all these possible changes of the abstract state with the term of effect.

Takeaway 3.19.0.1 Every evaluation has an effect.

This is because any evaluation has the concept of a next such evaluation that will be
performed after it. Even an expression like

(void)0;

37We will put aside memory_order_consume consistency and thus the dependency-ordered before relation.

19. ATOMIC ACCESS AND MEMORY CONSISTENCY 279

that drops the intermediate value sets the point of execution to the next statement, and thus
the abstract state has changed.

In a complicated context, it will be difficult to argue about the actual abstract state of
an execution in a given moment. Generally, the entire abstract state of a program execution
is not even observable; and in many cases, the concept of an overall abstract state is not
well defined. This is because we actually don’t know what moment means in this context.
In a multithreaded execution that is performed on several physical compute cores, there is
no real notion of a reference time between them. So generally, C does not even make the
assumption that an overall fine-grained notion of time exists between different threads.

As an analogy, think of two threads A and B as events that happen on two different plan-
ets that are orbiting with different speeds around a star. Times on these planets (threads) are
relative, and synchronization between them takes place only when a signal that is issued
from one planet (thread) reaches the other. The transmission of the signal takes time by
itself, and when the signal reaches its destination, its source has moved on. So the mutual
knowledge of the two planets (threads) is always partial.

19.1. The “happened before” relation. If we want to argue about a program’s exe-
cution (its correctness, its performance, and so on), we need to have enough of that partial
knowledge about the state of all threads, and we have to know how we can stitch that partial
knowledge together to get a coherent view of the whole.

Therefore, we will investigate a relation that was introduced by Lamport [1978]. In
C standard terms, it is the happened before relation between two evaluations E and F ,
denoted by F → E. This is a property between events that we observe a posteriori. Fully
spelled out, it would perhaps be better called the knowingly happened before relation,
instead.

One part of it consists of evaluations in the same thread that are related by the already-
introduced sequenced-before relation:

Takeaway 3.19.1.1 If F is sequenced before E, then F → E.

To see that, let us revisit listing 18.1 from our input thread. Here, the assignment
to command[0] is sequenced before the switch statement. Therefore, we are sure that all
cases in the switch statement are executed after the assignment, or at least that they will be
perceived as happening later. For example, when passing command to the nested function
calls below ungetc, we are sure this will provide the modified value. All of this can be
deduced from C’s grammar.

Between threads, the ordering of events is provided by synchronization. There are two
types of synchronization: the first is implied by operations on atomics, and the second by
certain C library calls. Let us first look into the case of atomics. An atomic object can be
used to synchronize two threads, if one thread writes a value and another thread reads the
value that was written.

Operations on atomics are guaranteed to be locally consistent; see figure 19.1.

Takeaway 3.19.1.2 The set of modifications of an atomic object X are performed in an
order that is consistent with the sequenced-before relation of any thread
that deals with X.

This sequence is called the modification order of X. For example, for the atomic x
in the figure, we have six modifications: the initialization (value 11), two increments, and
three assignments. The C standard guarantees that each of the two threads A and B perceives
all changes to x in an order that is consistent with this modification order.

In the example in the figure, we have only two synchronizations. First, thread B syn-
chronizes with A at the end of its --x operation, because here it has read (and modified) the

280 3. EXPERIENCE

Thread B

x
=
31
;

x
=
5;

y
=
x; x

=
0;

_Atomic(unsigned) x

Thread A

++
x;

--x;

11
11 12 31 30 5 0

FIGURE 19.1. Two threads that synchronize via an atomic. The cir-
cles present the modifications of object x. The bars below the threads
represent information about the state of A, and those above represent
information about the state of B.

value 31 that A wrote. The second synchronization occurs when A reads the value 5 that B
wrote and stores it into y.

As another example, let us investigate the interplay between the input thread (List-
ing 18.1) and the account thread (Listing 18.2). Both read and modify the field finished
in different places. For the simplicity of the argument, let us assume that there is no other
place than in these two functions where finished is modified.

The two threads will only synchronize via this atomic object if either of them modifies
it: that is, writes the value true into it. This can happen under two circumstances:

• The input thread encounters an end-of-file condition, either when feof(stdin)
returns true or if the case EOF is encountered. In both cases, the do loop termi-
nates, and the code after the label FINISH is executed.

• The account thread detects that the number of permitted repetitions is exceeded
and sets finished to true.

These events are not exclusive, but using an atomic object guarantees that one of the two
threads will succeed first in writing to finished.

• If the input thread writes first, the account thread may read the modified value of
finished in the evaluations of one of its while loops. This read synchronizes:
that is, the write event in the input thread is known to have happened before such
a read. Any modifications the input thread made before the write operation are
now visible to the account thread.

• If the account thread writes first, the input thread may read the modified value in
the while of its do loop. Again, this read synchronizes with the write and estab-
lishes a “happened before” relation, and all modifications made by the account
thread are visible to the input thread.

Observe that these synchronizations are oriented: each synchronization between threads
has a “writer” and a “reader” side. We attach two abstract properties to operations on atom-
ics and to certain C library calls that are called release semantics (on the writer side), ac-
quire semantics (for a reader), or acquire-release semantics (for a reader-writer). C library
calls with such synchronization properties will be discussed a bit later.

All operations on atomics that we have seen so far and that modify the object are
required to have release semantics, and all that read have acquire semantics. Later we will
see other atomic operations that have relaxed properties.

Takeaway 3.19.1.3 An acquire operation E in a thread TE synchronizes with a release
operation F if another thread TF if E reads the value that F has written.

19. ATOMIC ACCESS AND MEMORY CONSISTENCY 281

The idea of the special construction with acquire and release semantics is to force the
visibility of effects across such operations. We say that an effect X is visible at evaluation
E if we can consistently replace E with any appropriate read operation or function call
that uses the state affected by X . For example, in figure 19.1 the effects that A produces
before its x = 31 operation are symbolized by the bar below the thread. They are visible
to B once B has completed the --x operation.

Takeaway 3.19.1.4 If F synchronizes with E, all effects X that happened before F must
be visible at all evaluations G that happen after E.

As we saw in the example, there are atomic operations that can read and write atomi-
cally in one step. These are called read-modify-write operations:

• Calls to atomic_exchange and atomic_compare_exchange_weak for any _Atomic
objects

• Compound assignments or their functional equivalents; increment and decrement
operators for any _Atomic objects of arithmetic type

• Calls to atomic_flag_test_and_set for atomic_flag
Such an operation can synchronize on the read side with one thread and on the write side
with others. All such read-modify-write operations that we have seen so far have both
acquire and release semantics.

The happened-before relation closes the combination of the sequenced-before and
synchronizes-with relations transitively. We say that F knowingly happened before E,
if there are n and E0 = F,E1, ..., En−1, En = E such that Ei is sequenced before Ei+1

or synchronizes with it, for all 0 ≤ i < n.

Takeaway 3.19.1.5 We only can conclude that one evaluation happened before another
if we have a sequenced chain of synchronizations that links them.

Observe that this happened-before relation is a combination of very different concepts.
The sequenced-before relation can in many places be deduced from syntax, in particular if
two statements are members of the same basic block. Synchronization is different: besides
the two exceptions of thread startup and end, it is deduced through a data dependency on a
specific object, such as an atomic or a mutex.

The desired result of all this is that effects in one thread become visible in another.

Takeaway 3.19.1.6 If an evaluation F happened before E, all effects that are known to
have happened before F are also known to have happened before E.

19.2. C library calls that provide synchronization. C library functions with syn-
chronizing properties come in pairs: a releasing side and an acquiring side. They are
summarized in table 19.1.

TABLE 19.1. C library functions that form synchronization pairs

Release Acquire
thrd_create(.., f, x) Entry to f(x)
thrd_exit by thread id or return from f Start of tss_t destructors for id
End of tss_t destructors for id thrd_join(id) or atexit/at_quick_exit

handlers
call_once(&obj, g), first call call_once(&obj, h), all subsequent calls
Mutex release Mutex acquisition

282 3. EXPERIENCE

Note that for the first three entries, we know which events synchronize with which,
namely the synchronization is mainly limited to effects done by thread id. In particular,
by transitivity we see that thrd_exit or return always synchronize with thrd_join for
the corresponding thread id.

These synchronization features of thrd_create and thrd_join allowed us to draw
the lines in figure 18.1. Here, we do not know about any timing of events between the
threads that we launched, but within main we know that the order in which we created the
threads and the order in which we joined them is exactly as shown. We also know that
all effects of any of these threads on data objects are visible to main after we join the last
thread: the account thread.

If we detach our threads and don’t use thrd_join synchronization can only take place
between the end of a thread and the start of an atexit or at_quick_exit handler.

The other library functions are a bit more complicated. For the initialization utility
call_once, the return from the very first call call_once(&obj, g), the one that succeeds
in calling its function g, is a release operation for all subsequent calls with the same object
obj. This ensures that all write operations that are performed during the call to g() are
known to happen before any other call with obj. Thereby all other such calls also know
that the write operations (the initializations) have been performed.

For our example in subsection 18.2, this means the function errlog_fopen is executed
exactly once, and all other threads that might execute the call_once line will synchronize
with that first call. So when any of the threads return from the call, they know that the call
has been performed (either by themselves or by another thread that was faster) and that all
effects such as computing the filename and opening the stream are visible now. Thus all
threads that executed the call may use errlog and can be sure it is properly initialized.

For a mutex, a release operation can be a call to a mutex function, mtx_unlock, or the
entry into the wait functions for condition variables, cnd_wait and cnd_timedwait. An
acquire operation on a mutex is the successful acquisition of the mutex via any of the three
mutex calls mtx_lock, mtx_trylock, and mtx_timedlock, or the return from the the wait
function cnd_wait or cnd_timedwait.

Takeaway 3.19.2.1 Critical sections that are protected by the same mutex occur sequen-
tially.

Our input and accounting threads from the example (listings 18.1 and 18.2) access the
same mutex L->mtx. In the first, it is used to protect the birth of a new set of cells if the
user types a '␣', 'b', or 'B'. In the second, the entire inner block of the while loop is
protected by the mutex.

Figure 19.2 schematizes a sequence of three critical sections that are protected by
the mutex. The synchronization between the unlock operations (release) and the return
from the lock operation (acquire) synchronizes the two threads. This guarantees that the
changes applied to *L by the account thread in the first call to life_account are visible
in the input thread when it calls life_birth9. Equally, the second call to life_account
sees all changes to *L that occur during the call to life_birth9.

Takeaway 3.19.2.2 In a critical section that is protected by the mutex mut, all effects of
previous critical sections protected by mut are visible.

One of these known effects is always the advancement of the point of execution. In
particular, on return from mtx_unlock, the execution point is outside the critical section,
and this effect is known to the next thread that newly acquires the lock.

The wait functions for condition variables differ from acquire-release semantics; in
fact, they work exactly the other way around.

Takeaway 3.19.2.3 cnd_wait and cnd_timedwait have release-acquire semantics for
the mutex.

19. ATOMIC ACCESS AND MEMORY CONSISTENCY 283

mtx_t mtx

mtx_unlock(&mtx)

Accounting thread

mt
x_
un
lo
ck
(&
mt
x)

life_account(L)

mtx_lock(&mtx)

Suspended
life_account(L)

Suspended
mtx_lock(&mtx)

Input thread
life_birth9(L)

Suspended
mtx_lock(&mtx)

FIGURE 19.2. Two threads with three critical sections that synchronize
via a mutex. The circles present the modifications of object mtx.

That is, before suspending the calling thread, they perform a release operation and
then, when returning, an acquire operation. The other peculiarity is that the synchroniza-
tion goes through the mutex, not through the condition variable itself.

Takeaway 3.19.2.4 Calls to cnd_signal and cnd_broadcast synchronize via the mu-
tex.

The signaling thread will not necessarily synchronize with the waiting thread if it does
not place a call to cnd_signal or cnd_broadcast into a critical section that is protected
by the same mutex as the waiter. In particular, non-atomic modifications of objects that
constitute the condition expression may not become visible to a thread that is woken up by
a signal if the modification is not protected by the mutex. There is a simple rule of thumb
to ensure synchronization:

Takeaway 3.19.2.5 Calls to cnd_signal and cnd_broadcast should occur inside a
critical section that is protected by the same mutex as the waiters.

This is what we saw around line 145 in listing 18.1. Here, the function life_birth
modifies larger, non-atomic parts of *L, so we must make sure these modifications are
properly visible to all other threads that work with *L.

Line 154 shows a use of cnd_signal that is not protected by the mutex. This is only
possible here because all data that is modified in the other switch cases is atomic. Thus
other threads that read this data, such as L->frames, can synchronize through these atomics
and do not rely on acquiring the mutex. Be careful if you use conditional variables like
that.

19.3. Sequential consistency. The data consistency for atomic objects that we de-
scribed earlier, guaranteed by the happened-before relation, is called acquire-release con-
sistency. Whereas the C library calls we have seen always synchronize with that kind
of consistency, no more and no less, accesses to atomics can be specified with different
consistency models.

As you remember, all atomic objects have a modification order that is consistent with
all sequenced-before relations that see these modifications on the same object. Sequential

284 3. EXPERIENCE

_Atomic(unsigned) x

_Atomic(double) y

_Atomic(bool) s

Idealized sequential time

11
11 12 31 30 5 0

3.
3. 0.4 1288E+7 4.0 .3E-27

0
false true false false true

FIGURE 19.3. Sequential consistency for three different atomic objects

consistency has even more requirements than that; see figure 19.3. Here we illustrate the
common timeline of all sequentially consistent operations on top. Even if these operations
are performed on different processors and the atomic objects are realized in different mem-
ory banks, the platform has to ensure that all threads perceive all these operations as being
consistent with this one global linearization.

Takeaway 3.19.3.1 All atomic operations with sequential consistency occur in one global
modification order, regardless of the atomic object they are applied to.

So, sequential consistency is a very strong requirement. Not only that, it enforces
acquire-release semantics (a causal partial ordering between events), but it rolls out this
partial ordering to a total ordering. If you are interested in parallelizing the execution of
your program, sequential consistency may not be the right choice, because it may force
sequential execution of the atomic accesses.

The standard provides the following functional interfaces for atomic types. They
should conform to the description given by their name and also perform synchronization:

void atomic_store(A volatile* obj , C des);
C atomic_load(A volatile* obj);
C atomic_exchange(A volatile* obj , C des);
bool atomic_compare_exchange_strong(A volatile* obj , C *expe , C des);
bool atomic_compare_exchange_weak(A volatile* obj , C *expe , C des);
C atomic_fetch_add(A volatile* obj , M operand);
C atomic_fetch_sub(A volatile* obj , M operand);
C atomic_fetch_and(A volatile* obj , M operand);
C atomic_fetch_or(A volatile* obj , M operand);
C atomic_fetch_xor(A volatile* obj , M operand);
bool atomic_flag_test_and_set(atomic_flag volatile* obj);
void atomic_flag_clear(atomic_flag volatile* obj);

Here C is any appropriate data type, A is the corresponding atomic type, and M is a type that
is compatible with the arithmetic of C. As the names suggest, for the fetch and operator
interfaces the call returns the value that *obj had before the modification of the object.
So these interfaces are not equivalent to the corresponding compound assignment operator
(+=), since that would return the result after the modification.

All these functional interfaces provide sequential consistency.

Takeaway 3.19.3.2 All operators and functional interfaces on atomics that don’t specify
otherwise have sequential consistency.

Observe also that the functional interfaces differ from the operator forms, because
their arguments are volatile qualified.

There is another function call for atomic objects that does not imply synchronization:

19. ATOMIC ACCESS AND MEMORY CONSISTENCY 285

void atomic_init(A volatile* obj , C des);

Its effect is the same as a call to atomic_store or an assignment operation, but concurrent
calls from different threads can produce a race. View atomic_init as a cheap form of
assignment.

19.4. Other consistency models. A different consistency model can be requested
with a complementary set of functional interfaces. For example, an equivalent to the postfix
++ operator with just acquire-release consistency could be specified with

_Atomic(unsigned) at = 67;
...
if (atomic_fetch_add_explicit (&at, 1, memory_order_acq_rel)) {

...
}

Takeaway 3.19.4.1 Synchronizing functional interfaces for atomic objects have a form
with _explicit appended that allows us to specify their consistency model.

These interfaces accept additional arguments in the form of symbolic constants of type
memory_order that specify the memory semantics of the operation:

• memory_order_seq_cst requests sequential consistency. Using this is equiva-
lent to the forms without _explicit.

• memory_order_acq_rel is for an operation that has acquire-release consistency.
Typically, for general atomic types, you’d use it for a read-modify-write oper-
ation such as atomic_fetch_add or atomic_compare_exchange_weak, or for
atomic_flag with atomic_flag_test_and_set.

• memory_order_release is for an operation that has only release semantics. Typ-
ically this would be atomic_store or atomic_flag_clear.

• memory_order_acquire is for an operation that has only acquire semantics.
Typically this would be atomic_load.

• memory_order_consume is for an operation that has a weaker form of causal de-
pendency than acquire consistency. Typically this would also be atomic_load.

• memory_order_relaxed is for an operation that adds no synchronization re-
quirements. The only guarantee for such an operation is that it is indivisible.
A typical use case for such an operation is a performance counter that is used
by different threads, but for which we are only interested in a final accumulated
count.

The consistency models can be compared with respect to the restrictions they impose
to the platform. Figure 19.4 shows the implication order of the memory_order models.

Whereas memory_order_seq_cst and memory_order_relaxed are admissible for all
operations, there are some restrictions for other memory_orders. Operations that can only
occur on one side of a synchronization can only specify an order for that side. Therefore,
the two operations that only store (atomic_store or atomic_flag_clear) may not spec-
ify acquire semantics. Three operations only perform a load and may not specify release or
consume semantics: besides atomic_load, these are atomic_compare_exchange_weak
and atomic_compare_exchange_strong in case of failure. Thus, the latter two need two
memory_order arguments for their _explicit form, such that they can distinguish the
requirements for the success and failure cases:

bool
atomic_compare_exchange_strong_explicit(A volatile* obj , C *expe , C des ,

memory_order success ,
memory_order failure);

286 3. EXPERIENCE

memory_order_acq_rel

memory_order_seq_cst

memory_order_relaxed

memory_order_acquire

memory_order_consume

memory_order_release

FIGURE 19.4. Hierarchy of consistency models, from least to most constraining

bool
atomic_compare_exchange_weak_explicit(A volatile* obj , C *expe , C des ,

memory_order success ,
memory_order failure);

Here, the success consistency must be at least as strong as the failure consistency; see
figure 19.4.

Up to now, we have implicitly assumed that the acquire and release sides of a syn-
chronization are symmetric, but they aren’t: whereas there always is just one writer of a
modification, there can be several readers. Because moving new data to several processors
or cores is expensive, some platforms allow us to avoid the propagation of all visible ef-
fects that happened before an atomic operation to all threads that read the new value. C’s
consume consistency is designed to map this behavior. We will not go into the details of
this model, and you should use it only when you are certain that some effects prior to an
atomic read will not affect the reading thread.

Summary

• The "happens before" relation is the only possible way to reason about timing
between different threads. It is only established through synchronization that
uses either atomic objects or very specific C library functions.

• Sequential consistency is the default consistency model for atomics, but not for
other C library functions. It additionally assumes that all corresponding synchro-
nization events are totally ordered. This is an assumption that can be expensive.

• Explicitly using acquire-release consistency can lead to more efficient code, but
it needs a careful design to supply the correct arguments to the atomic functions
with a _explicit suffix.

Takeaways

A C and C++ are different: don’t mix them, and don’t mix them up. ii
B Don’t panic. 2
0.1.1.1 C is an imperative programming language. 2
0.1.2.1 C is a compiled programming language. 4
0.1.2.2 A correct C program is portable between different platforms. 4
0.1.2.3 A C program should compile cleanly without warnings. 7
0.2.1.1 Punctuation characters can be used with several different meanings. 8
0.2.2.1 All identifiers in a program have to be declared. 9
0.2.2.2 Identifiers may have several consistent declarations. 11
0.2.2.3 Declarations are bound to the scope in which they appear. 11
0.2.3.1 Declarations specify identifiers, whereas definitions specify objects. 11
0.2.3.2 An object is defined at the same time it is initialized. 11
0.2.3.3 Missing elements in initializers default to 0. 12
0.2.3.4 For an array with n elements, the first element has index 0, and the last

has index n-1. 12
0.2.3.5 Each object or function must have exactly one definition. 12
0.2.4.1 Domain iterations should be coded with a for statement. 13
0.2.4.2 The loop variable should be defined in the initial part of a for. 13
1.3.1.1 The value 0 represents logical false. 22
1.3.1.2 Any value different from 0 represents logical true. 22
1.3.1.3 Don’t compare to 0, false, or true. 23
1.3.1.4 All scalars have a truth value. 23
1.3.3.1 case values must be integer constant expressions. 28
1.3.3.2 case labels must not jump beyond a variable definition. 28
1.4.0.1 The type size_t represents values in the range [0, SIZE_MAX]. 29
1.4.1.1 Unsigned arithmetic is always well defined. 31
1.4.1.2 The operations +, -, and * on size_t provide the mathematically correct

result if it is representable as a size_t. 31
1.4.1.3 For unsigned values, a == (a/b)*b + (a%b). 31
1.4.1.4 Unsigned / and % are well defined only if the second operand is not 0. 32
1.4.1.5 Arithmetic on size_t implicitly does the computation %(SIZE_MAX+1).

32
1.4.1.6 In the case of overflow, unsigned arithmetic wraps around. 32
1.4.1.7 The result of unsigned / and % is always smaller than the operands. 32
1.4.1.8 Unsigned / and % can’t overflow. 32
1.4.2.1 Operators must have all their characters directly attached to each other. 33
1.4.2.2 Side effects in value expressions are evil. 33
1.4.2.3 Never modify more than one object in a statement. 33

287

288 TAKEAWAYS

1.4.3.1 Comparison operators return the value false or true. 33
1.4.3.2 Logic operators return the value false or true. 34
1.4.5.1 &&, ||, ?:, and , evaluate their first operand first. 35
1.4.5.2 Don’t use the , operator. 36
1.4.5.3 Most operators don’t sequence their operands. 36
1.4.5.4 Function calls don’t sequence their argument expressions. 36
1.4.5.5 Functions that are called inside expressions should not have side effects. 36
1.5.0.1 C programs primarily reason about values and not about their

representation. 38
1.5.1.1 All values are numbers or translate to numbers. 40
1.5.1.2 All values have a type that is statically determined. 40
1.5.1.3 Possible operations on a value are determined by its type. 41
1.5.1.4 A value’s type determines the results of all operations. 41
1.5.1.5 A type’s binary representation determines the results of all operations. 41
1.5.1.6 A type’s binary representation is observable. 41
1.5.1.7 Programs execute as if following the abstract state machine. 41as-if
1.5.1.8 Type determines optimization opportunities. 42
1.5.2.1 Before arithmetic, narrow integer types are promoted to signed int. 43
1.5.2.2 Each of the four classes of base types has three distinct unpromoted

types. 43
1.5.2.3 Use size_t for sizes, cardinalities, or ordinal numbers. 44
1.5.2.4 Use unsigned for small quantities that can’t be negative. 44
1.5.2.5 Use signed for small quantities that bear a sign. 44
1.5.2.6 Use ptrdiff_t for large differences that bear a sign. 44
1.5.2.7 Use double for floating-point calculations. 44
1.5.2.8 Use double complex for complex calculations. 44
1.5.3.1 Consecutive string literals are concatenated. 46
1.5.3.2 Numerical literals are never negative. 46
1.5.3.3 Decimal integer constants are signed. 46
1.5.3.4 A decimal integer constant has the first of the three signed types that fits

it. 46
1.5.3.5 The same value can have different types. 46
1.5.3.6 Don’t use octal or hexadecimal constants to express negative values. 46
1.5.3.7 Use decimal constants to express negative values. 46
1.5.3.8 Different literals can have the same value. 47
1.5.3.9 The effective value of a decimal floating-point constant may be different

from its literal value. 47
1.5.3.10 Literals have value, type, and binary representations. 48
1.5.3.11 I is reserved for the imaginary unit. 48
1.5.4.1 Unary - and + have the type of their promoted argument. 48
1.5.4.2 Avoid narrowing conversions. 49
1.5.4.3 Don’t use narrow types in arithmetic. 49
1.5.4.4 Avoid operations with operands of different signedness. 50
1.5.4.5 Use unsigned types whenever you can. 50
1.5.4.6 Chose your arithmetic types such that implicit conversions are harmless. 50
1.5.5.1 All variables should be initialized. 50

TAKEAWAYS 289

1.5.5.2 Use designated initializers for all aggregate data types. 51
1.5.5.3 {0} is a valid initializer for all object types that are not VLA. 51
1.5.6.1 All constants with a particular meaning must be named. 52
1.5.6.2 All constants with different meanings must be distinguished. 52
1.5.6.3 An object of const-qualified type is read-only. 52
1.5.6.4 String literals are read-only. 53
1.5.6.5 Enumeration constants have either an explicit or a positional value. 53
1.5.6.6 Enumeration constants are of type signed int. 54
1.5.6.7 An integer constant expression doesn’t evaluate any object. 54
1.5.6.8 Macro names are in all caps. 55
1.5.6.9 A compound literal defines an object. 55
1.5.6.10 Don’t hide a terminating semicolon inside a macro. 55
1.5.6.11 Right-indent continuation markers for macros to the same column. 55
1.5.7.1 The same value may have different binary representations. 56
1.5.7.2 Unsigned arithmetic wraps nicely. 56
1.5.7.3 The maximum value of any integer type is of the form 2p − 1. 56
1.5.7.4 Arithmetic on an unsigned integer type is determined by its precision. 56
1.5.7.5 The second operand of a shift operation must be less than the precision. 58
1.5.7.6 Positive values are represented independently from signedness. 59
1.5.7.7 Once the abstract state machine reaches an undefined state, no further

assumption about the continuation of the execution can be made. 60
1.5.7.8 It is your responsibility to avoid undefined behavior of all operations. 60
1.5.7.9 Signed arithmetic may trap badly. 61
1.5.7.10 In twos’ complement representation, INT_MIN < -INT_MAX. 61
1.5.7.11 Negation may overflow for signed arithmetic. 61
1.5.7.12 Use unsigned types for bit operations. 61
1.5.7.13 If the type uintN_t is provided, it is an unsigned integer type with

exactly N bits of width and precision. 61
1.5.7.14 If the type intN_t is provided, it is signed, with two’s complement

representation and has a width of exactly N bits and a precision of N − 1. 62
1.5.7.15 If types with the required properties exist for values of N = 8, 16, 32,

and 64, types uintN_t and intN_t, respectively, must be provided. 62
1.5.7.16 For any of the fixed-width types that are provided, _MIN (only signed),

maximum _MAX, and literals _C macros are provided, too. 62
1.5.7.17 Floating-point operations are neither associative, commutative, nor

distributive. 63
1.5.7.18 Never compare floating-point values for equality. 63
1.6.1.1 Arrays are not pointers. 65
1.6.1.2 An array in a condition evaluates to true. 66
1.6.1.3 There are array objects but no array values. 66
1.6.1.4 Arrays can’t be compared. 66
1.6.1.5 Arrays can’t be assigned to. 67
1.6.1.6 VLAs can’t have initializers. 67
1.6.1.7 VLAs can’t be declared outside functions. 67
1.6.1.8 The length of an FLA is determined by an integer constant expression

(ICE) or by an initializer. 67
1.6.1.9 An array-length specification must be strictly positive. 67

290 TAKEAWAYS

1.6.1.10 An array with a length that is not an integer constant expression is an
VLA. 67

1.6.1.11 The length of an array A is (sizeof A)/(sizeof A[0]). 67
1.6.1.12 The innermost dimension of an array parameter to a function is lost. 68
1.6.1.13 Don’t use the sizeof operator on array parameters to functions. 68
1.6.1.14 Array parameters behave as if the array is passed by referenceC . 68
1.6.1.15 A string is a 0-terminated array of char. 68
1.6.1.16 Using a string function with a non-string has undefined behavior. 70
1.6.2.1 Pointers are opaque objects. 72
1.6.2.2 Pointers are valid, null, or indeterminate. 72
1.6.2.3 Initialization or assignment with 0 makes a pointer null. 72
1.6.2.4 In logical expressions, pointers evaluate to false if they are null. 72
1.6.2.5 Indeterminate pointers lead to undefined behavior. 72
1.6.2.6 Always initialize pointers. 73
1.6.3.1 Omitted struct initializers force the corresponding member to 0. 75
1.6.3.2 A struct initializer must initialize at least one member. 75
1.6.3.3 struct parameters are passed by value. 75
1.6.3.4 Structures can be assigned with = but not compared with == or !=. 75
1.6.3.5 A structure layout is an important design decision. 76
1.6.3.6 All struct declarations in a nested declaration have the same scope of

visibility. 77
1.6.4.1 Forward-declare a struct within a typedef using the same identifier as

the tag name. 78
1.6.4.2 A typedef only creates an alias for a type, but never a new type. 78
1.6.4.3 Identifier names terminating with _t are reserved. 79
1.7.1.1 All functions must have prototypes. 81
1.7.1.2 Functions have only one entry but can have several return s. 82
1.7.1.3 A function return must be consistent with its type. 82
1.7.1.4 Reaching the end of the {} block of a function is equivalent to a return

statement without an expression. 82
1.7.1.5 Reaching the end of the {} block of a function is only allowed for void

functions. 82
1.7.2.1 Use EXIT_SUCCESS and EXIT_FAILURE as return values for main. 83
1.7.2.2 Reaching the end of main is equivalent to a return with value

EXIT_SUCCESS. 83
1.7.2.3 Calling exit(s) is equivalent to the evaluation of return s in main. 83
1.7.2.4 exit never fails and never returns to its caller. 83
1.7.2.5 All command-line arguments are transferred as strings. 83
1.7.2.6 Of the arguments to main, argv[0] holds the name of the program

invocation. 83
1.7.2.7 Of the arguments to main, argv[argc] is 0. 83
1.7.3.1 Make all preconditions for a function explicit. 84
1.7.3.2 In a recursive function, first check the termination condition. 84
1.7.3.3 Ensure the preconditions of a recursive function in a wrapper function. 85
1.7.3.4 Multiple recursion may lead to exponential computation times. 87
1.7.3.5 A bad algorithm will never lead to a implementation that performs well. 88
1.7.3.6 Improving an algorithm can dramatically improve performance. 88

TAKEAWAYS 291

1.8.1.1 Failure is always an option. 92
1.8.1.2 Check the return value of library functions for errors. 92
1.8.1.3 Fail fast, fail early, and fail often. 92
1.8.1.4 Identifier names terminating with _s are reserved. 93
1.8.1.5 Missed preconditions for the execution platform must abort compilation. 94
1.8.1.6 Only evaluate macros and integer literals in a preprocessor condition. 94
1.8.1.7 In preprocessor conditions, unknown identifiers evaluate to 0. 94
1.8.3.1 Opaque types are specified through functional interfaces. 96
1.8.3.2 Don’t rely on implementation details of opaque types. 97
1.8.3.3 puts and fputs differ in their end-of-line handling. 97
1.8.3.4 Text input and output converts data. 99
1.8.3.5 There are three commonly used conversion to encode end-of-line. 100
1.8.3.6 Text lines should not contain trailing white space. 100
1.8.3.7 Parameters of printf must exactly correspond to the format specifiers. 101
1.8.3.8 Use "%d" and "%u" formats to print integer values. 101
1.8.3.9 Use the "%x" format to print bit patterns. 101
1.8.3.10 Use the "%g" format to print floating-point values. 102
1.8.3.11 Using an inappropriate format specifier or modifier makes the behavior

undefined. 102
1.8.3.12 Use "%+d", "%#X", and "%a" for conversions that have to be read later. 103
1.8.3.13 Don’t use gets. 104
1.8.3.14 fgetc returns int to be able to encode a special error status, EOF, in

addition to all valid characters. 104
1.8.3.15 End of file can only be detected after a failed read. 104
1.8.4.1 The interpretation of numerically encoded characters depends on the

execution character set. 106
1.8.7.1 Regular program termination should use a return from main. 114
1.8.7.2 Use exit from a function that may terminate the regular control flow. 114
1.8.7.3 Don’t use functions other than exit for program termination, unless

you have to inhibit the execution of library cleanups. 114
1.8.7.4 Use as many assert s as you can to confirm runtime properties. 115
1.8.7.5 In production compilations, use NDEBUG to switch off all assert. 115

Level 2 117
C All C code must be readable. 118
2.9.0.1 Short-term memory and the field of vision are small. 118
2.9.0.2 Coding style is not a question of taste but of culture. 118
2.9.0.3 When you enter an established project, you enter a new cultural space. 118
2.9.1.1 Choose a consistent strategy for white space and other text formatting. 118
2.9.1.2 Have your text editor automatically format your code correctly. 119
2.9.2.1 Choose a consistent naming policy for all identifiers. 119
2.9.2.2 Any identifier that is visible in a header file must be conforming. 120
2.9.2.3 Don’t pollute the global space of identifiers. 120
2.9.2.4 Names must be recognizable and quickly distinguishable. 120
2.9.2.5 Naming is a creative act. 121
2.9.2.6 File-scope identifiers must be comprehensive. 121
2.9.2.7 A type name identifies a concept. 122

292 TAKEAWAYS

2.9.2.8 A global constant identifies an artifact. 122
2.9.2.9 A global variable identifies state. 122
2.9.2.10 A function or functional macro identifies an action. 122
2.10.0.1 Function interfaces describe what is done. 123what
2.10.0.2 Interface comments document the purpose of a function. 123what for
2.10.0.3 Function code tells how the function is organized. 123how
2.10.0.4 Code comments explain the manner in which function details are

implemented. 123in which manner
2.10.0.5 Separate interface and implementation. 124
2.10.0.6 Document the interface – explain the implementation. 124
2.10.1.1 Document interfaces thoroughly. 124
2.10.1.2 Structure your code in units that have strong semantic connections. 125
2.10.2.1 Implement literally. 126
2.10.2.2 Control flow must be obvious. 126
2.10.2.3 Macros should not change control flow in a surprising way. 127
2.10.2.4 Function-like macros should syntactically behave like function calls. 128
2.10.2.5 Function parameters are passed by value. 128
2.10.2.6 Global variables are frowned upon. 129
2.10.2.7 Express small tasks as pure functions whenever possible. 129
2.11.1.1 Using * with an indeterminate or null pointer has undefined behavior. 134
2.11.1.2 A valid pointer refers to the first element of an array of the reference

type. 135
2.11.1.3 The length of an array object cannot be reconstructed from a pointer. 136
2.11.1.4 Pointers are not arrays. 136
2.11.1.5 Only subtract pointers from elements of an array object. 137
2.11.1.6 All pointer differences have type ptrdiff_t. 138
2.11.1.7 Use ptrdiff_t to encode signed differences of positions or sizes. 138
2.11.1.8 For printing, cast pointer values to void*, and use the format %p. 138
2.11.1.9 Pointers have truth. 138
2.11.1.10 Set pointer variables to 0 as soon as you can. 138
2.11.1.11 Accessing an object that has a trap representation of its type has

undefined behavior. 138
2.11.1.12 When dereferenced, a pointed-to object must be of the designated type. 139
2.11.1.13 A pointer must point to a valid object or one position beyond a valid

object or be null. 139
2.11.1.14 Don’t use NULL. 140
2.11.2.1 Don’t hide pointers in a typedef. 143
2.11.3.1 The two expressions A[i] and *(A+i) are equivalent. 144
2.11.3.2 Evaluation of an array A returns &A[0]. 144array decay
2.11.3.3 In a function declaration, any array parameter rewrites to a pointer. 144
2.11.3.4 Only the innermost dimension of an array parameter is rewritten. 145
2.11.3.5 Declare length parameters before array parameters. 145
2.11.3.6 The validity of array arguments to functions must be guaranteed by the

programmer. 145
2.11.4.1 A function f without a following opening (decays to a pointer to its

start. 146function decay
2.11.4.2 Function pointers must be used with their exact type. 147

TAKEAWAYS 293

2.11.4.3 The function call operator (...) applies to function pointers. 148
2.12.0.1 Pointer types with distinct base types are distinct. 150
2.12.1.1 sizeof(char) is 1 by definition. 150
2.12.1.2 Every object A can be viewed as unsigned char[sizeof A]. 151
2.12.1.3 Pointers to character types are special. 151
2.12.1.4 Use the type char for character and string data. 151
2.12.1.5 Use the type unsigned char as the atom of all object types. 151
2.12.1.6 The sizeof operator can be applied to objects and object types. 151
2.12.1.7 The size of all objects of type T is given by sizeof(T). 151
2.12.2.1 The in-memory order of the representation digits of an arithmetic type

is implementation defined. 153
2.12.2.2 On most architectures, CHAR_BIT is 8 and UCHAR_MAX is 255. 153
2.12.3.1 With the exclusion of character types, only pointers of the same base

type may alias. 154 Aliasing
2.12.3.2 Avoid the & operator. 154
2.12.4.1 Any object pointer converts to and from void*. 155
2.12.4.2 An object has storage, type, and value. 155
2.12.4.3 Converting an object pointer to void* and then back to the same type is

the identity operation. 155
2.12.4.4 Avoid void*. 155 avoid2*
2.12.5.1 Don’t use casts. 156
2.12.6.1 Objects must be accessed through their effective type

or through a pointer to a character type. 157 Effective Type
2.12.6.2 Any member of an object that has an effective union type can be

accessed at any time, provided the byte representation amounts to a valid
value of the access type. 157

2.12.6.3 The effective type of a variable or compound literal is the type of its
declaration. 157

2.12.6.4 Variables and compound literals must be accessed through their declared
type or through a pointer to a character type. 157

2.13.1.1 Don’t cast the return of malloc and friends. 161
2.13.1.2 Storage that is allocated through malloc is uninitialized and has no type.162
2.13.1.3 malloc indicates failure by returning a null pointer value. 165
2.13.1.4 For every allocation, there must be a free. 168
2.13.1.5 For every free, there must be a malloc, calloc, aligned_alloc, or

realloc. 168
2.13.1.6 Only call free with pointers as they are returned by malloc, calloc,

aligned_alloc, or realloc. 168
2.13.2.1 Identifiers only have visibility inside their scope, starting at their

declaration. 168
2.13.2.2 The visibility of an identifier can be shadowed by an identifier of the

same name in a subordinate scope. 169
2.13.2.3 Every definition of a variable creates a new, distinct object. 170
2.13.2.4 Read-only object literals may overlap. 170
2.13.2.5 Objects have a lifetime outside of which they can’t be accessed. 170
2.13.2.6 Referring to an object outside of its lifetime has undefined behavior. 170
2.13.2.7 Objects with static storage duration are always initialized. 172

294 TAKEAWAYS

2.13.2.8 Unless they are VLA or temporary objects, automatic objects have a
lifetime corresponding to the execution of their block of definition. 172

2.13.2.9 Each recursive call creates a new local instance of an automatic object. 172
2.13.2.10 The & operator is not allowed for variables declared with register. 173
2.13.2.11 Variables declared with register can’t alias. 173
2.13.2.12 Declare local variables that are not arrays in performance-critical code

as register. 173
2.13.2.13 Arrays with storage class register are useless. 173
2.13.2.14 Objects of temporary lifetime are read-only. 173
2.13.2.15 Temporary lifetime ends at the end of the enclosing full expression. 173
2.13.3.1 For an object that is not a VLA, lifetime starts when the scope of the

definition is entered, and it ends when that scope is left. 174
2.13.3.2 Initializers of automatic variables and compound literals are evaluated

each time the definition is met. 175
2.13.3.3 For a VLA, lifetime starts when the definition is encountered and ends

when the visibility scope is left. 175
2.13.4.1 Objects of static or thread-storage duration are initialized by default. 175
2.13.4.2 Objects of automatic or allocated storage duration must be initialized

explicitly. 175
2.13.4.3 Systematically provide an initialization function for each of your data

types. 175
2.14.1.1 The string strto... conversion functions are not const-safe. 183
2.14.1.2 The memchr and strchr search functions are not const-safe. 184
2.14.1.3 The strspn and strcspn search functions are const-safe. 184
2.14.1.4 sprintf makes no provision against buffer overflow. 185
2.14.1.5 Use snprintf when formatting output of unknown length. 186
2.14.3.1 Multibyte characters don’t contain null bytes. 189
2.14.3.2 Multibyte strings are null terminated. 190
2.14.4.1 Open streams on which you use fread or fwrite in binary mode. 196
2.14.4.2 Files that are written in binary mode are not portable between platforms.196
2.14.4.3 fseek and ftell are not suitable for very large file offsets. 196
2.14.5.1 Labels for goto are visible in the entire function that contains them. 200
2.14.5.2 goto can only jump to a label inside the same function. 200
2.14.5.3 goto should not jump over variable initializations. 200

Level 3 203
D Premature optimization is the root of all evil. 203
3.15.0.1 Do not trade off safety for performance. 204
3.15.0.2 Optimizers are clever enough to eliminate unused initializations. 205
3.15.0.3 The different notations of pointer arguments to functions result in the

same binary code. 205
3.15.0.4 Not taking addresses of local variables helps the optimizer because it

inhibits aliasing. 205
3.15.1.1 Inlining can open up a lot of optimization opportunities. 206
3.15.1.2 Adding a compatible declaration without the inline keyword ensures

the emission of the function symbol in the current TU. 207
3.15.1.3 An inline function definition is visible in all TUs. 208
3.15.1.4 An inline definition goes in a header file. 208

TAKEAWAYS 295

3.15.1.5 An additional declaration without inline goes in exactly one TU. 208
3.15.1.6 Only expose functions as inline if you consider them to be stable. 208
3.15.1.7 All identifiers that are local to an inline function should be protected

by a convenient naming convention. 208
3.15.1.8 inline functions can’t access identifiers of static functions. 208
3.15.1.9 inline functions can’t define or access identifiers of modifiable static

objects. 208
3.15.2.1 A restrict-qualified pointer has to provide exclusive access. 209
3.15.2.2 A restrict-qualification constrains the caller of a function. 209
E Don’t speculate about the performance of code; verify it rigorously. 210
3.15.3.1 Complexity assessment of algorithms requires proofs. 210
3.15.3.2 Performance assessment of code requires measurement. 210
3.15.3.3 All measurements introduce bias. 210
3.15.3.4 Instrumentation changes compile-time and runtime properties. 210
3.15.3.5 The relative standard deviation of run times must be in a low percentage

range. 211
3.15.3.6 Collecting higher-order moments of measurements to compute variance

and skew is simple and cheap. 217
3.15.3.7 Runtime measurements must be hardened with statistics. 217
3.16.0.1 Whenever possible, prefer an inline function to a functional macro. 218
3.16.0.2 A functional macro shall provide a simple interface to a complex task. 219
3.16.1.1 Macro replacement is done in an early translation phase, before any

other interpretation is given to the tokens that compose the program. 220
3.16.1.2 If a functional macro is not followed by (), it is not expanded. 220 macro retention
3.16.3.1 The line number in __LINE__ may not fit into an int. 225
3.16.3.2 Using __LINE__ is inherently dangerous. 225
3.16.3.3 Stringification with the operator # does not expand macros in its

argument. 226
3.16.5.1 When passed to a variadic parameter, all arithmetic types are converted

as for arithmetic operations, with the exception of float arguments, which
are converted to double. 231

3.16.5.2 A variadic function has to receive valid information about the type of
each argument in the variadic list. 232

3.16.5.3 Using variadic functions is not portable unless each argument is forced
to a specific type. 232

3.16.5.4 Avoid variadic functions for new interfaces. 232
3.16.5.5 The va_arg mechanism doesn’t give access to the length of the

va_list. 234
3.16.5.6 A variadic function needs a specific convention for the length of the list. 234
3.16.6.1 The result type of a _Generic expression is the type of the chosen

expression. 235
3.16.6.2 Using _Generic with inline functions adds optimization opportunities.235
3.16.6.3 The type expressions in a _Generic expression should only be

unqualified types: no array types, and no function types. 236
3.16.6.4 The type expressions in a _Generic expression must refer to mutually

incompatible types. 237
3.16.6.5 The type expressions in a _Generic expression cannot be a pointer to a

VLA. 237
3.16.6.6 All choices expression1 ... expressionN in a _Generic must be valid. 238

296 TAKEAWAYS

3.17.2.1 Side effects in functions can lead to indeterminate results. 245
3.17.2.2 The specific operation of any operator is sequenced after the evaluation

of all its operands. 245
3.17.2.3 The effect of updating an object with any of the assignment, increment,

or decrement operators is sequenced after the evaluation of its operands. 245
3.17.2.4 A function call is sequenced with respect to all evaluations of the caller. 245
3.17.2.5 Initialization-list expressions for array or structure types are

indeterminately sequenced. 246
3.17.3.1 Each iteration defines a new instance of a local object. 246
3.17.3.2 goto should only be used for exceptional changes in control flow. 247
3.17.4.1 Each function call defines a new instance of a local object. 247
3.17.5.1 longjmp never returns to the caller. 249
3.17.5.2 When reached through normal control flow, a call to setjmp marks the

call location as a jump target and returns 0. 249
3.17.5.3 Leaving the scope of a call to setjmp invalidates the jump target. 249
3.17.5.4 A call to longjmp transfers control directly to the position that was set

by setjmp as if that had returned the condition argument. 249
3.17.5.5 A 0 as a condition parameter to longjmp is replaced by 1. 249
3.17.5.6 setjmp may be used only in simple comparisons inside controlling

expression of conditionals. 250
3.17.5.7 Optimization interacts badly with calls to setjmp. 251
3.17.5.8 Objects that are modified across longjmp must be volatile. 251
3.17.5.9 volatile objects are reloaded from memory each time they are

accessed. 251
3.17.5.10 volatile objects are stored to memory each time they are modified. 251
3.17.5.11 The typedef for jmp_buf hides an array type. 252
3.17.6.1 C’s signal-handling interface is minimal and should only be used for

elementary situations. 253
3.17.6.2 Signal handlers can kick in at any point of execution. 255
3.17.6.3 After return from a signal handler, execution resumes exactly where it

was interrupted. 256
3.17.6.4 A C statement may correspond to several processor instructions. 256
3.17.6.5 Signal handlers need types with uninterruptible operations. 256
3.17.6.6 Objects of type sig_atomic_t should not be used as counters. 257
3.17.6.7 Unless specified otherwise, C library functions are not asynchronous

signal safe. 257
3.18.1.1 If a thread T0 writes a non-atomic object that is simultaneously read

or written by another thread T1, the behavior of the execution becomes
undefined. 264

3.18.1.2 In view of execution in different threads, standard operations on atomic
objects are indivisible and linearizable. 264

3.18.1.3 Use the specifier syntax _Atomic(T) for atomic declarations. 265
3.18.1.4 There are no atomic array types. 265
3.18.1.5 Atomic objects are the privileged tool to force the absence of race

conditions. 265
3.18.2.1 A properly initialized FILE* can be used race-free by several threads. 266
3.18.2.2 Concurrent write operations should print entire lines at once. 266

TAKEAWAYS 297

3.18.2.3 Destruction and deallocation of shared dynamic objects needs a lot of
care. 267

3.18.3.1 Pass thread-specific data through function arguments. 267
3.18.3.2 Keep thread-specific state in local variables. 267
3.18.3.3 A thread_local variable has one separate instance for each thread. 267
3.18.3.4 Use thread_local if initialization can be determined at compile time. 268
3.18.4.1 Mutex operations provide linearizability. 269
3.18.4.2 Every mutex must be initialized with mtx_init. 270
3.18.4.3 A thread that holds a nonrecursive mutex must not call any of the mutex

lock functions for it. 270
3.18.4.4 A recursive mutex is only released after the holding thread issues as

many calls to mtx_unlock as it has acquired locks. 270
3.18.4.5 A locked mutex must be released before the termination of the thread. 270
3.18.4.6 A thread must only call mtx_unlock on a mutex that it holds. 270
3.18.4.7 Each successful mutex lock corresponds to exactly one call to

mtx_unlock. 270
3.18.4.8 A mutex must be destroyed at the end of its lifetime. 270
3.18.5.1 On return from a cnd_t wait, the expression must be checked again. 273
3.18.5.2 A condition variable can only be used simultaneously with one mutex. 274
3.18.5.3 A cnd_t must be initialized dynamically. 275
3.18.5.4 A cnd_t must be destroyed at the end of its lifetime. 275
3.18.6.1 Returning from main or calling exit terminates all threads. 275
3.18.6.2 While blocking on mtx_t or cnd_t, a thread frees processing resources. 276
3.19.0.1 Every evaluation has an effect. 278
3.19.1.1 If F is sequenced before E, then F → E. 279
3.19.1.2 The set of modifications of an atomic object X are performed in an order

that is consistent with the sequenced-before relation of any thread that deals
with X. 279

3.19.1.3 An acquire operation E in a thread TE synchronizes with a release
operation F if another thread TF if E reads the value that F has written. 281

3.19.1.4 If F synchronizes with E, all effects X that happened before F must be
visible at all evaluations G that happen after E. 281

3.19.1.5 We only can conclude that one evaluation happened before another if
we have a sequenced chain of synchronizations that links them. 281

3.19.1.6 If an evaluation F happened before E, all effects that are known to have
happened before F are also known to have happened before E. 281

3.19.2.1 Critical sections that are protected by the same mutex occur sequentially.282
3.19.2.2 In a critical section that is protected by the mutex mut, all effects of

previous critical sections protected by mut are visible. 282
3.19.2.3 cnd_wait and cnd_timedwait have release-acquire semantics for the

mutex. 283
3.19.2.4 Calls to cnd_signal and cnd_broadcast synchronize via the mutex. 283
3.19.2.5 Calls to cnd_signal and cnd_broadcast should occur inside a critical

section that is protected by the same mutex as the waiters. 283
3.19.3.1 All atomic operations with sequential consistency occur in one global

modification order, regardless of the atomic object they are applied to. 284
3.19.3.2 All operators and functional interfaces on atomics that don’t specify

otherwise have sequential consistency. 284

298 TAKEAWAYS

3.19.4.1 Synchronizing functional interfaces for atomic objects have a form with
_explicit appended that allows us to specify their consistency model. 285

Bibliography

Douglas Adams. The hitchhiker’s guide to the galaxy. audiocassette from the double LP
adaptation, 1986. ISBN 0-671-62964-6.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms. MIT Press, 2 edition, 2001.

Edsger W. Dijkstra. Letters to the editor: Go to statement considered harmful. Commun.
ACM, 11(3):147–148, March 1968. ISSN 0001-0782. doi: 10.1145/362929.362947.
URL http://doi.acm.org/10.1145/362929.362947.

Martin Gardner. Mathematical Games – The fantastic combinations of John Conway’s new
solitaire game "life". Scientific American, 223:120–123, October 1970.

Jens Gustedt. The register overhaul – named constants for the c programming language,
August 2016. URL http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2067.
pdf.

ISO/IEC/IEEE 60559, editor. Information technology – Microprocessor Systems –
Floating-Point arithmetic, volume 60559:2011. ISO, 2011. URL https://www.iso.
org/standard/57469.html.

JTC1/SC22/WG14, editor. Programming languages - C. Number ISO/IEC 9899. ISO,
fourth edition, 2018. URL https://www.iso.org/standard/74528.html.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

Donald E. Knuth. Structured programming with go to statements. In Computing Surveys,
volume 6. 1974.

Donald E. Knuth. The Art of Computer Programming. Volume 1: Fundamental Algorithms.
Addison-Wesley, 3rd edition, 1997.

Leslie Lamport. Time, clocks and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, 1978.

T. Nishizeki, K. Takamizawa, and N. Saito. Computational complexities of obtaining pro-
grams with minimum number of GO TO statements from flow charts. Trans. Inst. Elect.
Commun. Eng. Japan, 60(3):259–260, 1977.

Carlos O’Donell and Martin Sebor. Updated field experience with Annex K — bounds
checking interfaces, September 2015. URL http://www.open-std.org/jtc1/sc22/
wg14/www/docs/n1969.htm.

Philippe Pébay. Formulas for robust, one-pass parallel computation of covariances
and arbitrary-order statistical moments. Technical Report SAND2008-6212, SAN-
DIA, 2008. URL http://prod.sandia.gov/techlib/access-control.cgi/2008/
086212.pdf.

POSIX. ISO/IEC/IEEE Information technology – Portable Operating Systems Interface
(POSIX®) Base Specifications, volume 9945:2009. ISO, Geneva, Switzerland, 2009.
Issue 7.

Dennis M. Ritchie. The development of the C language. In Thomas J. Bergin, Jr. and
Richard G. Gibson, Jr., editors, Proceedings, ACM History of Programming Languages
II, Cambridge, MA, April 1993. URL http://cm.bell-labs.com/cm/cs/who/dmr/
chist.html.

299

http://doi.acm.org/10.1145/362929.362947
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2067.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2067.pdf
https://www.iso.org/standard/57469.html
https://www.iso.org/standard/57469.html
https://www.iso.org/standard/74528.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm
http://prod.sandia.gov/techlib/access-control.cgi/2008/086212.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2008/086212.pdf
http://cm.bell-labs.com/cm/cs/who/dmr/chist.html
http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

300 Bibliography

Charles Simonyi. Meta-programming: a software production model. Technical Re-
port CSL-76-7, PARC, 1976. URL http://www.parc.com/content/attachments/
meta-programming-csl-76-7.pdf.

Mikkel Thorup. Structured programs have small tree-width and good register allocation.
Information and Computation, 142:318–332, 1995.

Linus Torvalds et al. Linux kernel coding style, 1996. URL https://www.kernel.org/
doc/Documentation/process/coding-style.rst. evolved mildly over the years.

Unicode, editor. The Unicode Standard. The Unicode Consortium, Mountain View, CA,
USA, 10.0.0 edition, 2017. URL https://unicode.org/versions/Unicode10.0.0/.

John von Neumann. First draft of a report on the EDVAC, 1945. internal document of the
ENIAC project.

B. P. Welford. Note on a method for calculating corrected sums of squares and products.
Technometrics, 4(3):419–420, 1962.

http://www.parc.com/content/attachments/meta-programming-csl-76-7.pdf
http://www.parc.com/content/attachments/meta-programming-csl-76-7.pdf
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://unicode.org/versions/Unicode10.0.0/

Index

.L_AGAIN label, 178, 180

.L_ELSE label, 178

.L_END label, 180

.L_NO label, 178

.L_N_GT_0 label, 180

.L_STR_EQ label, 178, 180

.L_STR_FRMT label, 178, 180

.L_STR_NE label, 178, 180

.L_YES label, 178
_Alignas , 159, 205
_Alignof , 30, 31, 54, 158, 159
_Bool , 23, 43, 58
_C particle, 62, 289
_Complex , 43
_Exit function, 80, 114, 115, 254, 256, 257
_Generic , 21, 219, 234, 234–239, 295
_IOLBF macro, 266
_MAX particle, 56, 62, 289
_MIN particle, 62, 289
_Noreturn , 83, 83, 114, 240, 248, 257, 276
_Static_assert , 94, 115
_Thread_local , 171, 267
__DATE__ macro, 224
__FILE__ macro, 149, 224
__LINE__ macro, 149, 224, 224–226, 228, 230,

237, 295
__STDC_ISO_10646__ macro, 191
__STDC_LIB_EXT1__ macro, 93, 94
__STDC_MB_MIGHT_NEQ_WC__ macro, 191
__STDC_NO_ATOMICS__ macro, 257
__STDC_NO_COMPLEX__ macro, 35, 35, 48
__STDC_WANT_LIB_EXT1__ macro, 93
__TIME__ macro, 224
__VA_ARGS__ macro, 176, 227, 228, 228–231
__func__ macro, 224, 224, 225, 228, 230, 237
_explicit particle, 285, 286, 298
_t particle, 9, 79, 120, 290

abort function, 80, 114, 115, 115, 240, 253, 257
abs function, 94
abstract representation, 41
abstract state, 38, 40, 41, 50, 60, 65, 129, 148,

150, 153, 154, 241, 278, 279
abstract state machine, 40
acos macro, 94, 229
acosh macro, 94
acquire-release consistency, 283
address, 134, 134
address space, 150

AGAIN label, 174, 174, 177, 178, 180
aggregate data type, 65
aliasing, 154, 209
alignas macro, 159, 159, 205
aligned_alloc function, 160, 161, 168, 171, 293
alignment, 157
alignof macro, 30, 31, 159, 205
allocation, 160

dynamic, 160
and macro, 30, 34, 34
and_eq macro, 30, 57
Annex K, 93, 93, 98, 103, 104, 110, 113
API, 90, 120, 121
application programming interface, 90
argument list, 219

variable, 81
arguments, 4
array, 10

fixed length, 67
multidimensional, 66
variable-length, 67

array index, 12
ASCEND label, 242, 243, 247
asctime_s function, 110, 110
asin macro, 94
asinh macro, 94
assembler, 4, 177
assert macro, 84, 85, 94, 115, 115, 131, 137,

142, 291
<assert.h>, 84, 94, 115
assignment, 9
at_quick_exit function, 114, 115, 146, 256, 257,

277, 281, 282
atan macro, 94
atan2 macro, 94
atanh macro, 94
atexit function, 19, 114, 115, 115, 145, 146, 266,

267, 275–277, 281, 282
atomic access, 264
atomic specifier, 264
atomic_compare_exchange_strong function,

284, 285
atomic_compare_exchange_strong_explicit

function, 285
atomic_compare_exchange_weak function, 281,

284, 285
atomic_compare_exchange_weak_explicit

function, 286

301

302 INDEX

atomic_exchange function, 281, 284
atomic_fetch_add function, 284, 285
atomic_fetch_add_explicit function, 285
atomic_fetch_and function, 284
atomic_fetch_or function, 284
atomic_fetch_sub function, 284
atomic_fetch_xor function, 284
atomic_flag type, 241, 257, 260, 278, 281, 284,

285
atomic_flag_clear function, 284, 285
atomic_flag_test_and_set function, 281, 284,

285
atomic_init function, 285
atomic_load function, 284, 285
ATOMIC_LONG_LOCK_FREE macro, 259, 259
atomic_store function, 284, 285
auto , 171, 172, 172, 249
average, 211

basic_blocks type, 243, 249–252, 255
behavior, 5

defined, 31, 32, 60, 155, 174–176, 244, 265, 266
undefined, 60, 60, 70, 72, 73, 100, 102, 134,

138, 139, 154, 156, 157, 170, 174, 209, 253,
264

binary code, 4
binary mode IO, 195
binary representation, 41, 56
bit, 56

least significant, 56
least significant set, 56
most significant, 56
most significant set, 56
sign, 59

bitand macro, 30, 57
bitor macro, 30, 57
block, 9, 11

basic, 240
dependent, 21

bounds-checking interfaces, 93
break , 24
bsearch function, 146, 146, 147
buffer overflow, 93
buffered IO, 99
bus error, 158
bytes, 150

C library, 14, 90
header

<assert.h>, 84, 94, 115
<complex.h>, 35, 48, 119
<ctype.h>, 105
<errno.h>, 192, 197
<float.h>, 62
<inttypes.h>, 62
<iso646.h>, 34, 57
<limits.h>, 56, 61
<locale.h>, 113
<math.h>, 94, 137
<setjmp.h>, 248
<signal.h>, 253, 254
<stdalign.h>, 159
<stdarg.h>, 232

<stdargs.h>, 81
<stdatomic.h>, 257
<stdbool.h>, 22, 58
<stddef.h>, 45, 137
<stdint.h>, 29, 45, 56, 61
<stdio.h>, 10, 27, 92, 96
<stdlib.h>, 10, 26, 98, 146, 160, 161
<stdnoreturn.h>, 83
<string.h>, 69, 109
<tgmath.h>, 25, 35, 48, 63, 94, 218, 234
<threads.h>, 267, 268
<time.h>, 45, 74, 75, 109, 120
<wchar.h>, 190
<wctype.h>, 192

call, 3
leaf, 86

call by reference, 14
call by value, 14
call_once function, 265, 266, 266, 277, 281, 282
calloc function, 160, 161, 168, 171, 204, 293
Camel case, 121
carg function, 96
case , 27
cast, 18, 161, 223
casts, 156
cbrt macro, 94
ceil macro, 94
char16_t type, 195
char32_t type, 195
CHAR_BIT macro, 152, 153, 153, 293
CHAR_MAX macro, 57, 236
CHAR_MIN macro, 57
character set

basic, 69
cimag macro, 63, 158
circular, 162
circular_append, 162
circular_delete, 163
circular_destroy, 163
circular_element, 162
circular_getlength, 163
circular_init, 163
circular_new, 163
circular_pop, 162
circular_resize, 163
CLEANUP label, 199
clock function, 45, 92, 111, 111
clock_t type, 44, 45, 111
CLOCKS_PER_SEC macro, 44, 111
CMPLX macro, 35, 48
CMPLXF macro, 48
CMPLXL macro, 48
cnd_broadcast function, 273, 274, 274, 283, 297
cnd_destroy function, 275
cnd_init function, 275
cnd_signal function, 269, 271, 272, 273, 274,

274, 283, 297
cnd_t type, 268, 271, 271, 273, 273, 275,

275–277, 297
cnd_timedwait function, 271, 273, 274, 282, 297
cnd_wait function, 273, 274, 282, 297
code factorization, 80
code path, 21

INDEX 303

code point, 190
code/B9-detach.c, 275, 276
code/B9.c, 262, 263, 272, 274
code/basic_blocks.c, 247, 248, 253, 255
code/circular.c, 163–167
code/crash.c, 158
code/endianness.c, 152, 156
code/euclid.h, 84, 85
code/fibonacci.c, 86
code/fibonacci2.c, 88
code/fibonacciCache.c, 87
code/generic.h, 226, 234, 236
code/getting-started.c, 3, 8, 12–14
code/heron_k.h, 124
code/life.c, 271
code/life.h, 264, 268
code/lifetime-assembler.s, 177
code/lifetime-optimized.s, 179
code/lifetime.c, 174
code/macro_trace.c, 222, 224, 225, 228, 229
code/macro_trace.h, 221–231, 237–239
code/mbstrings-main.c, 189
code/mbstrings.c, 191–194
code/mbstrings.h, 191
code/numberline.c, 181–186, 197–199
code/rationals.c, 129–131, 141, 142
code/rationals.h, 129
code/sequence_point.c, 244
code/sighandler.c, 254, 258
code/sighandler.h, 254, 258, 259
code/stats.h, 214, 215
code/strtoul.c, 107, 108
code/timespec.c, 140, 212, 215
code/va_arg.c, 233
code/yday.c, 74, 75, 81
coding error, 192
coding style, 22
Comma operators, 128
comment, 8
compiled, 4, 287
compiler, 4, 5
compiler output, 5
compl macro, 30, 57
complex macro, 35, 43, 44, 48, 48, 49, 55,

157–159, 288
complex point

real, 42
<complex.h>, 35, 48, 119
compound literals, 160
const qualifier, 52
constant

floating point
decimal, 45
hexadecimal, 45

integer
character, 45
decimal, 45
octal, 45

constraint violation
runtime, 198

consume consistency, 286
continue , 24, 25, 25, 126, 269

control flow, 14, 80, 114, 126, 127, 200, 206, 219,
240, 240, 241, 244, 246, 249, 255, 261, 275,
278, 291, 292, 296

control statements, 21
controlling expression, 21
conversion, 48, 82

implicit, 48, 223
return value, 82

copysign macro, 94
corvid

chough, 53, 203
jay, 53, 117
magpie, 1, 53
raven, 17, 53

cos macro, 28, 94
cosh macro, 94
creal macro, 63, 96, 158
critical

data, 268
section, 268

critical section, 241
ctime_s function, 110
<ctype.h>, 105

dangling else, 127
data, 38, 40
data type

aggregate, 65
derived, 65

DBL_MANT_DIG macro, 63
DBL_MAX macro, 57, 62, 236, 237
DBL_MAX_EXP macro, 63, 124
DBL_MIN macro, 57, 62
DBL_MIN_EXP macro, 63, 124
decay, 144
declaration, 9
declaration order, 51
default , 27
default initializer, 51
defined, 9
defined behavior, 31, 32, 60, 155, 174–176, 244,

265, 266
defined state, 31, 32, 60, 155, 175, 176, 244, 265,

266
definition, 9, 11, 11
dereference, 134
derived data type, 65
descend type, 242, 243, 247–252, 256
designated, 12
detach, 276
diagnostic, 5
diagnostic output, 7
difftime function, 44, 45, 77, 109, 109, 110
directive, 8
div function, 95
do , 24
domain, 13
domain error, 35
draw_sep, 189

eax hardware register, 177–180
ebp hardware register, 180
ebx hardware register, 180

304 INDEX

ecx hardware register, 177–180
edi hardware register, 177–180
EDOM macro, 197
edx hardware register, 177, 178, 180
EFAULT macro, 197–199
effect, 278

visible, 281
effective Type, 159
effective type, 147, 150, 156, 157, 162
EILSEQ macro, 192, 197
EINVAL macro, 108
else , 21
enable_alignment_check, 159
end_line type, 242, 248
endian

big, 153
little, 151, 153

endianness, 153
ENOMEM macro, 197–199
entry point, 177
enumeration, 53
environment list, 111
environment variable, 111
EOF macro, 92, 92, 93, 96, 96, 97, 104, 104, 181,

197–199, 248, 269, 280, 291
eofOut label, 247, 248, 248, 250
EOVERFLOW macro, 197–199
epoch, 110
ERANGE macro, 108, 197
erf macro, 95
erfc macro, 95
errno macro, 92, 92, 93, 105, 108, 114, 127,

191–193, 197–199, 255
<errno.h>, 192, 197
errno_t type, 98, 110, 113
escape characters, 4
esi hardware register, 177–180
evaluation

indeterminately sequenced, 245
unsequenced, 244

exact-width integer types, 61
executable, 4, 5
execute, 5
execution label, 248
EXIT_FAILURE macro, 82, 82, 92, 97, 99, 103,

105, 181, 226, 254, 290
EXIT_SUCCESS macro, 3, 9, 10, 13, 14, 20, 26, 55,

82, 82, 83, 97, 99, 103, 105, 290
exp macro, 95
exp2 macro, 95
expm1 macro, 95
expression, 29

controlling, 21
integer constant, 54

extended character, 189
extern , 81, 147, 148, 169, 169–172, 221, 259,

264–266

fabs macro, 24, 25, 95, 96, 234, 235
fabsf function, 234
fabsl function, 234
fallback, 27

false macro, 20, 22, 23, 27, 33, 34, 34, 40, 43, 50,
55, 57, 58, 59, 71, 72, 85, 87, 93, 108, 122,
128, 221–225, 228, 237, 284, 287, 288, 290

fclose function, 92, 98, 98, 99, 105, 266, 267
fdim macro, 95
feof function, 104, 104, 269, 274, 280
fflush function, 98, 98–100, 158, 250
fgetc function, 103, 103, 104, 195, 291
fgetline, 184
fgetpos function, 92
fgets function, 103, 103–105, 184, 200, 242
fgoto label, 177–180
fgoto macro, 174
Fibonnacci numbers, 86
file position, 195
FILE type, 96, 96–98, 100, 103–105, 184, 195,

197–199, 209, 230, 233, 266, 267, 296
FLA, see fixed-length array
<float.h>, 62
floating-point, 42, 44, 46–49, 62, 63, 81, 90, 101,

102, 107, 123, 153, 188, 215, 234, 235, 288
multiply add, 96
real, 42

floor macro, 95
FLT_RDXRDX, 125
FLT_MAX macro, 236, 237
FLT_RADIX macro, 95, 125
flushing a stream, 99
fma macro, 95, 96
fmax macro, 95
fmin macro, 95
fmod macro, 95
fopen function, 92, 97, 97–99, 105, 266
fopen_s function, 98
for , 23
format, 3, 4
format specifiers, 3
forward declaration, 78
fpclassify macro, 95
fprintf_s function, 103
fprintnumbers, 197
fputc function, 96, 96, 97, 100, 158, 189, 195,

230
fputs function, 96, 96, 97, 99, 100, 104, 105, 114,

189, 195, 198, 199, 209, 242, 267, 273, 291
fread function, 195, 195, 196, 200, 294
free function, 160, 161, 161, 165, 168, 171, 181,

182, 198–200, 293
freopen function, 97, 98, 98, 99, 103
freopen_s function, 98
frexp macro, 95, 96
fscanf function, 186
fseek function, 195, 195, 196, 294
fsetpos function, 92
ftell function, 195, 195, 196, 294
function, 3, 4, 9, 12

asynchronous signal safe, 257
pure, 129, 208
recursive, 84
variadic, 231

function argument, 3, 14
function call, 13
function parameters, 114

INDEX 305

function pointer, 19, 114
pointer

function, 145
fwrite function, 195, 195, 196, 200, 294

getc function, 181
getchar function, 103, 104, 269
getenv function, 111, 111, 113, 116
getenv_s function, 113, 113
gets (obsolete), 104, 291
gets_s function, 104, 104
globals, 11, 122
glyph, 190
gmtime_s function, 110, 110
greatest common divisor, 84

handlers, 114
happened before, 279
happened-before, 281
happened-before relation, 264
hardware register

eax, 177–180
ebp, 180
ebx, 180
ecx, 177–180
edi, 177–180
edx, 177, 178, 180
esi, 177–180
r12, 216
r13, 216
r14, 216
rax, 177, 178, 216
rbp, 177–180
rbx, 180, 216
rcx, 177
rdi, 215
rdx, 177–179
rip, 215, 216
rsp, 177–180, 216
xmm0, 215
xmm1, 215
xmm2, 215
xmm3, 215
xmm4, 215

header, 91
header files, 10, 124
heron, 124
Heron approximation, 24
historic interfaces, 25, 42, 45, 52, 58, 59, 75, 77,

78, 92, 96, 105, 111, 151, 183, 240, 252
Hungarian notation, 121
hypot macro, 95

ICE, 54, 55, 67
identifier, 9, 10

reserved, 120
if , 21
ifdef , 21, 35, 35, 191, 222, 233, 254, 258
ilogb macro, 95
imperative, 2, 287
imperative programming, 2
implementation defined, 43
implementation-defined, 49, 153
include files, 10

include guards, 126
indices, 10
indivisible, 256
initialization, 9, 11
initializer, 11, 12, 50, 51, 55, 67, 68, 73, 75, 128,

171, 175, 231, 232, 245
default, 51
designated, 51, 66, 258

inlining, 206, 207, 235
instance, 160
instructions, 177
int16_t type, 62
int32_t type, 62, 151
INT64_C macro, 62
INT64_MAX macro, 62
INT64_MIN macro, 62
int64_t type, 62, 62
INT8_C macro, 62
INT8_MAX macro, 62
INT8_MIN macro, 62
int8_t type, 62
INT_MAX macro, 49, 49, 57, 61, 147, 197–200,

225, 236, 289
INT_MIN macro, 57, 61, 289
integer

unsigned, 29
integer rank, 43, 59
integers

signed, 42
unsigned, 42

interrupt
handler, 252
hardware, 252
software, 252
vector, 252

interrupted label, 242, 247, 248, 248, 250
intmax_t type, 45, 102, 107, 187, 196
<inttypes.h>, 62
is particle, 197
isalnum function, 105, 106
isalpha function, 105, 106
isblank function, 105, 106
iscntrl function, 105, 106
isdigit function, 105, 106, 107
isfinite macro, 95
isgraph function, 105, 106
isinf macro, 95, 137
isless macro, 122
islower function, 105, 106
isnan macro, 95
isnormal macro, 95
<iso646.h>, 34, 57
isprint function, 105, 106
ispunct function, 105, 106
isspace function, 105, 106
isupper function, 105, 106, 107
isxdigit function, 105, 106
iteration domain, 13

jargon, 2
jmp_buf type, 242, 248, 248–252, 296
join, 262
jump, 2, 174, 200, 240, 246, 247

306 INDEX

long, 200, 203, 240, 241, 247, 249, 278
short, 27, 200, 241, 278
target, 27, 249

keyword, 8, 9, 42
_Alignas, 159, 205
_Alignof, 30, 31, 54, 158, 159
_Bool, 23, 43, 58
_Complex, 43
_Generic, 21, 219, 234, 234–239, 295
_Noreturn, 83, 83, 114, 240, 248, 257, 276
_Static_assert, 94, 115
_Thread_local, 171, 267
auto, 171, 172, 172, 249
break, 24
case, 27
continue, 24, 25, 25, 126, 269
default, 27
do, 24
else, 21
extern, 81, 147, 148, 169, 169–172, 221, 259,

264–266
for, 23
if, 21
ifdef, 21, 35, 35, 191, 222, 233, 254, 258
register, 172
return, 82
static, 171
switch, 27
while, 24

knowingly happened before, 279

label, 174, 177, 240, 246
.L_AGAIN, 178, 180
.L_ELSE, 178
.L_END, 180
.L_NO, 178
.L_N_GT_0, 180
.L_STR_EQ, 178, 180
.L_STR_FRMT, 178, 180
.L_STR_NE, 178, 180
.L_YES, 178
AGAIN, 174, 174, 177, 178, 180
ASCEND, 242, 243, 247
CLEANUP, 199
eofOut, 247, 248, 248, 250
execution, 248
fgoto, 177–180
interrupted, 242, 247, 248, 248, 250
LEFT, 242, 247, 250
NEW_LINE, 242, 247
plusL, 242, 248, 248, 250, 251
plusR, 242, 248, 248, 250
RIGHT, 242, 247, 250
tooDeep, 242, 248, 248–250

labs function, 94
LC_ALL macro, 114, 189
LC_COLLATE macro, 114
LC_CTYPE macro, 114
LC_MONETARY macro, 114
LC_NUMERIC macro, 114
LC_TIME macro, 114
LDBL_MAX macro, 236, 237

ldexp macro, 95, 96
ldiv function, 95
LEFT label, 242, 247, 250
lgamma macro, 95
library, 170

constant
memory_order_acq_rel, 285, 285, 286
memory_order_acquire, 285, 286
memory_order_consume, 278, 285, 286
memory_order_relaxed, 285, 285, 286
memory_order_release, 285, 286
memory_order_seq_cst, 285, 285, 286
mtx_plain, 270
mtx_recursive, 270
mtx_timed, 269, 270

function
_Exit, 80, 114, 115, 254, 256, 257
abort, 80, 114, 115, 115, 240, 253, 257
abs, 94
aligned_alloc, 160, 161, 168, 171, 293
asctime_s, 110, 110
at_quick_exit, 114, 115, 146, 256, 257,

277, 281, 282
atexit, 19, 114, 115, 115, 145, 146, 266,

267, 275–277, 281, 282
atomic_compare_exchange_strong, 284,

285
atomic_compare_exchange_strong_explicit,

285
atomic_compare_exchange_weak, 281, 284,

285
atomic_compare_exchange_weak_explicit,

286
atomic_exchange, 281, 284
atomic_fetch_add, 284, 285
atomic_fetch_add_explicit, 285
atomic_fetch_and, 284
atomic_fetch_or, 284
atomic_fetch_sub, 284
atomic_fetch_xor, 284
atomic_flag_clear, 284, 285
atomic_flag_test_and_set, 281, 284, 285
atomic_init, 285
atomic_load, 284, 285
atomic_store, 284, 285
bsearch, 146, 146, 147
call_once, 265, 266, 266, 277, 281, 282
calloc, 160, 161, 168, 171, 204, 293
carg, 96
clock, 45, 92, 111, 111
cnd_broadcast, 273, 274, 274, 283, 297
cnd_destroy, 275
cnd_init, 275
cnd_signal, 269, 271, 272, 273, 274, 274,

283, 297
cnd_timedwait, 271, 273, 274, 282, 297
cnd_wait, 273, 274, 282, 297
ctime_s, 110
difftime, 44, 45, 77, 109, 109, 110
div, 95
fabsf, 234
fabsl, 234
fclose, 92, 98, 98, 99, 105, 266, 267

INDEX 307

feof, 104, 104, 269, 274, 280
fflush, 98, 98–100, 158, 250
fgetc, 103, 103, 104, 195, 291
fgetpos, 92
fgets, 103, 103–105, 184, 200, 242
fopen, 92, 97, 97–99, 105, 266
fopen_s, 98
fprintf_s, 103
fputc, 96, 96, 97, 100, 158, 189, 195, 230
fputs, 96, 96, 97, 99, 100, 104, 105, 114,

189, 195, 198, 199, 209, 242, 267, 273,
291

fread, 195, 195, 196, 200, 294
free, 160, 161, 161, 165, 168, 171, 181, 182,

198–200, 293
freopen, 97, 98, 98, 99, 103
freopen_s, 98
fscanf, 186
fseek, 195, 195, 196, 294
fsetpos, 92
ftell, 195, 195, 196, 294
fwrite, 195, 195, 196, 200, 294
getc, 181
getchar, 103, 104, 269
getenv, 111, 111, 113, 116
getenv_s, 113, 113
gets_s, 104, 104
gmtime_s, 110, 110
isalnum, 105, 106
isalpha, 105, 106
isblank, 105, 106
iscntrl, 105, 106
isdigit, 105, 106, 107
isgraph, 105, 106
islower, 105, 106
isprint, 105, 106
ispunct, 105, 106
isspace, 105, 106
isupper, 105, 106, 107
isxdigit, 105, 106
labs, 94
ldiv, 95
llabs, 94
lldiv, 95
localeconv, 114
localtime_s, 110, 110
longjmp, 80, 200, 240–242, 247, 248,

248–252, 255–257, 260, 296
main, 6
mblen, 191, 192
mbrtowc, 193
mbsrtowcs, 191, 192
memchr, 69, 70, 70, 71, 109, 183, 294
memcmp, 69, 70, 70, 71
memcpy, 69, 70, 71, 167, 185, 187, 199, 209,

219, 220
memmove, 167, 209
mktime, 92, 109, 109, 110
modf, 95
modff, 95
modfl, 95
mtx_destroy, 270
mtx_init, 270, 297

mtx_lock, 268, 268–274, 278, 282, 283
mtx_timedlock, 269, 269, 270, 282
mtx_trylock, 269, 269, 282
mtx_unlock, 268, 268–274, 282, 283, 297
nan, 95
nanf, 95
nanl, 95
perror, 92, 92, 93, 97, 99, 103, 105, 114
printf, 6
printf_s, 93, 103
puts, 20, 27, 28, 45, 90, 92, 93, 96, 97, 99,

103, 104, 127, 128, 291
qsort, 146, 146–149
quick_exit, 80, 114, 115, 254, 256, 257
raise, 80, 250, 254, 255
rand, 266
realloc, 160, 161, 166–168, 171, 183, 199,

200, 293
remove, 100
rename, 100
scanf, 186, 187, 188, 200, 227
setjmp, 80, 200, 240, 248, 248–252,

255–257, 260, 296
setlocale, 113, 113, 114, 189, 195
setvbuf, 266
signal, 240, 254, 254, 257
snprintf, 90, 186, 198, 266, 294
sprintf, 185, 199, 294
srand, 266
sscanf, 186
strchr, 70, 71, 109, 183, 184, 191, 294
strcmp, 70, 70, 71, 122, 144
strcoll, 70, 70, 114
strcpy, 69, 70, 71, 144, 190
strcspn, 70, 71, 109, 184, 187, 294
strftime, 109, 110, 110–112, 114
strlen, 19, 69, 70, 71, 80, 144, 181, 185,

190, 191, 198, 199
strpbrk, 109
strrchr, 109
strspn, 70, 71, 108, 109, 184, 187, 191, 294
strstr, 109, 191
strtod, 26, 83, 90, 92, 107, 187, 200
strtof, 107
strtoimax, 107
strtok, 109
strtol, 107, 187, 227
strtold, 107
strtoll, 107
strtoul, 107, 107, 108, 182, 187, 226, 227
strtoull, 107, 182, 183, 227, 275
strtoumax, 107
strxfrm, 114
thrd_create, 92, 240, 261, 262, 262, 275,

276, 281, 282
thrd_current, 276
thrd_detach, 276, 276, 277
thrd_equal, 276
thrd_exit, 240, 275, 275, 276, 281, 282
thrd_join, 261, 263, 278, 281, 282
thrd_sleep, 276, 276
thrd_yield, 276, 276

308 INDEX

time, 45, 76, 109, 109, 110, 111, 111, 125,
266

timespec_get, 109, 110, 111, 111, 210, 212,
213, 215–217, 271

tolower, 105
toupper, 105, 107
tss_create, 268, 277
tss_delete, 268
tss_get, 268
tss_set, 268
ungetc, 263, 269, 279
va_arg, 232, 233, 234, 295
va_copy, 232
va_end, 232, 233
va_start, 232, 233
vfprintf, 233

macro
_IOLBF, 266
__DATE__, 224
__FILE__, 149, 224
__LINE__, 149, 224, 224–226, 228, 230, 237,

295
__STDC_ISO_10646__, 191
__STDC_LIB_EXT1__, 93, 94
__STDC_MB_MIGHT_NEQ_WC__, 191
__STDC_NO_ATOMICS__, 257
__STDC_NO_COMPLEX__, 35, 35, 48
__STDC_WANT_LIB_EXT1__, 93
__TIME__, 224
__VA_ARGS__, 176, 227, 228, 228–231
__func__, 224, 224, 225, 228, 230, 237
acos, 94, 229
acosh, 94
alignas, 159, 159, 205
alignof, 30, 31, 159, 205
and, 30, 34, 34
and_eq, 30, 57
asin, 94
asinh, 94
assert, 84, 85, 94, 115, 115, 131, 137, 142,

291
atan, 94
atan2, 94
atanh, 94
ATOMIC_LONG_LOCK_FREE, 259, 259
bitand, 30, 57
bitor, 30, 57
cbrt, 94
ceil, 94
CHAR_BIT, 152, 153, 153, 293
CHAR_MAX, 57, 236
CHAR_MIN, 57
cimag, 63, 158
CLOCKS_PER_SEC, 44, 111
CMPLX, 35, 48
CMPLXF, 48
CMPLXL, 48
compl, 30, 57
complex, 35, 43, 44, 48, 48, 49, 55, 157–159,

288
copysign, 94
cos, 28, 94
cosh, 94

creal, 63, 96, 158
DBL_MANT_DIG, 63
DBL_MAX, 57, 62, 236, 237
DBL_MAX_EXP, 63, 124
DBL_MIN, 57, 62
DBL_MIN_EXP, 63, 124
EDOM, 197
EFAULT, 197–199
EILSEQ, 192, 197
EINVAL, 108
ENOMEM, 197–199
EOF, 92, 92, 93, 96, 96, 97, 104, 104, 181,

197–199, 248, 269, 280, 291
EOVERFLOW, 197–199
ERANGE, 108, 197
erf, 95
erfc, 95
errno, 92, 92, 93, 105, 108, 114, 127,

191–193, 197–199, 255
EXIT_FAILURE, 82, 82, 92, 97, 99, 103, 105,

181, 226, 254, 290
EXIT_SUCCESS, 3, 9, 10, 13, 14, 20, 26, 55,

82, 82, 83, 97, 99, 103, 105, 290
exp, 95
exp2, 95
expm1, 95
fabs, 24, 25, 95, 96, 234, 235
false, 20, 22, 23, 27, 33, 34, 34, 40, 43, 50,

55, 57, 58, 59, 71, 72, 85, 87, 93, 108, 122,
128, 221–225, 228, 237, 284, 287, 288,
290

fdim, 95
fgoto, 174
floor, 95
FLT_MAX, 236, 237
FLT_RADIX, 95, 125
fma, 95, 96
fmax, 95
fmin, 95
fmod, 95
fpclassify, 95
frexp, 95, 96
hypot, 95
ilogb, 95
INT64_C, 62
INT64_MAX, 62
INT64_MIN, 62
INT8_C, 62
INT8_MAX, 62
INT8_MIN, 62
INT_MAX, 49, 49, 57, 61, 147, 197–200, 225,

236, 289
INT_MIN, 57, 61, 289
isfinite, 95
isinf, 95, 137
isless, 122
isnan, 95
isnormal, 95
LC_ALL, 114, 189
LC_COLLATE, 114
LC_CTYPE, 114
LC_MONETARY, 114
LC_NUMERIC, 114

INDEX 309

LC_TIME, 114
LDBL_MAX, 236, 237
ldexp, 95, 96
lgamma, 95
LLONG_MAX, 236, 237
llrint, 95
llround, 95, 96
log, 95
log10, 95
log1p, 95
log2, 95
logb, 95
LONG_MAX, 50, 196, 236, 237
LONG_MIN, 61
lrint, 95
lround, 95, 96
MB_LEN_MAX, 193
NDEBUG, 115, 115, 221, 222, 291
nearbyint, 95, 96
nextafter, 95
nexttoward, 95
noreturn, 83
not, 30, 34, 34
not_eq, 30, 34, 55
NULL, 139, 139, 140, 232, 292
offsetof, 31, 54
ONCE_FLAG_INIT, 266, 267
or, 21, 23, 24, 27, 30, 34, 34, 228
or_eq, 30, 57
pow, 94, 95
PRId64, 62, 62
PRIi64, 62
PRIo64, 62
PRIu32, 62
PRIu64, 62
PRIX64, 62
PRIx64, 62
PTRDIFF_MAX, 57
PTRDIFF_MIN, 57
putc, 91
putchar, 91, 96, 96, 97, 242, 248
remainder, 95
remquo, 95
rint, 95, 96
round, 95, 96
scalbln, 95
scalbn, 95, 96
SCHAR_MAX, 236
SEEK_CUR, 196
SEEK_END, 196
SEEK_SET, 196
SHRT_MAX, 236
SIG_DFL, 253–255
SIG_ERR, 254
SIG_IGN, 253, 255
SIGABRT, 253–255, 258
SIGFPE, 253, 258
SIGILL, 253, 258
SIGINT, 253, 255, 256, 258
signbit, 95
SIGSEGV, 253, 258
SIGTERM, 253–255, 258
sin, 28, 94, 95, 96

sinh, 95
SIZE_MAX, 29, 31, 32, 37, 41, 55, 56, 57, 71,

122, 194, 287
sqrt, 28, 35, 95, 96
static_assert, 94, 94, 107, 115
stderr, 97, 97, 103, 105, 113, 114, 137, 181,

200, 221–225, 228, 230, 237, 250, 255
stdin, 103, 104, 105, 181, 186, 186, 200,

209, 241, 242, 248, 263, 269, 274, 280
stdout, 91, 97, 97, 99, 100, 103, 105, 158,

181, 189, 200, 242, 247, 248, 250, 273
tan, 95
tanh, 95
tgamma, 95
thread_local, 171, 267, 268, 277, 297
TIME_UTC, 111, 213, 215, 216, 271
true, 20, 22–25, 27, 33, 34, 34, 43, 50, 55,

57, 58, 59, 60, 66, 71, 85, 87, 93, 108, 122,
237, 263, 264, 269, 271, 280, 284,
287–289

trunc, 95, 96
UCHAR_MAX, 57, 152, 153, 153, 236, 293
UINT64_C, 62, 62
UINT64_MAX, 62
UINT8_C, 62
UINT8_MAX, 62
UINT_MAX, 50, 56, 57, 59–61, 236
ULLONG_MAX, 56, 236, 237
ULONG_MAX, 56, 108, 236, 237
USHRT_MAX, 236
WEOF, 194
xor, 30, 57
xor_eq, 30, 57

obsolete
gets, 104, 291

particle
_C, 62, 289
_MAX, 56, 62, 289
_MIN, 62, 289
_explicit, 285, 286, 298
_t, 9, 79, 120, 290
is, 197
SIG, 253
to, 228
wcs, 191

struct member
tm_hour, 74, 74, 76, 77
tm_isdst, 74, 74, 75, 77, 109
tm_mday, 74, 74–77, 109
tm_min, 74, 74, 76, 77
tm_mon, 74, 74–76, 109
tm_sec, 74, 74, 76, 77, 109
tm_wday, 74, 75, 109
tm_yday, 74, 75, 76, 109
tm_year, 74, 74–76, 109
tv_nsec, 76, 77, 110, 111, 141, 212, 213
tv_sec, 76, 77, 110, 120, 140, 141, 271

tagname
timespec, 76–78, 109, 110, 111, 120, 122,

126, 140, 212, 215, 269, 271, 273, 276
tm, 74, 74–78, 109–111

type

310 INDEX

atomic_flag, 241, 257, 260, 278, 281, 284,
285

basic_blocks, 243, 249–252, 255
char16_t, 195
char32_t, 195
clock_t, 44, 45, 111
cnd_t, 268, 271, 271, 273, 273, 275,

275–277, 297
descend, 242, 243, 247–252, 256
end_line, 242, 248
errno_t, 98, 110, 113
FILE, 96, 96–98, 100, 103–105, 184, 195,

197–199, 209, 230, 233, 266, 267, 296
int16_t, 62
int32_t, 62, 151
int64_t, 62, 62
int8_t, 62
intmax_t, 45, 102, 107, 187, 196
jmp_buf, 242, 248, 248–252, 296
mbstate_t, 190, 190–194
memory_order, 285, 285, 286
mtx_t, 241, 265, 268, 268–271, 273, 274,

276–278, 283, 297
once_flag, 265, 266, 267, 278
ptrdiff_t, 23, 44, 45, 57, 102, 138, 187,

288, 292
rsize_t, 104, 110, 113
sh_count, 254, 257, 259
sh_counted, 259
sh_enable, 254, 255
sig_atomic_t, 241, 257, 260, 296
signal_handler, 254, 255
skipspace, 242, 248
thrd_start_t, 261, 262
thrd_t, 261, 262, 262, 275, 276
time_t, 44, 45, 76, 77, 109, 109–111, 141
tss_dtor_t, 268
tss_t, 268, 281
uint16_t, 62
uint32_t, 62, 62
uint64_t, 62, 213, 215
uint8_t, 62
uintmax_t, 45, 102, 107, 187
va_list, 232, 233, 234, 295
wchar_t, 187, 190, 191–194

lifetime, 160, 170
<limits.h>, 56, 61
line buffering, 99
linearizability, 264, 268
linkage, 170

external, 170
internal, 170
no, 170

linker, 170
literal, 9

compound, 55
integer

hexadecimal, 45
string, 45

literals, 45
little-endian, 151
llabs function, 94
lldiv function, 95

LLONG_MAX macro, 236, 237
llrint macro, 95
llround macro, 95, 96
locale, 113
<locale.h>, 113
localeconv function, 114
localtime_s function, 110, 110
lock-free, 241, 257, 259, 260
log macro, 95
log10 macro, 95
log1p macro, 95
log2 macro, 95
logb macro, 95
LONG_MAX macro, 50, 196, 236, 237
LONG_MIN macro, 61
longjmp function, 80, 200, 240–242, 247, 248,

248–252, 255–257, 260, 296
loop

variable, 13
loop body, 13
loop condition, 13
lrint macro, 95
lround macro, 95, 96
LSB, 56
lvalue, 32

macro, 54
function-like, 55, 91, 218, 218, 219
variadic, 227

macro call, 219
main function, 6
<math.h>, 94, 137
MB_LEN_MAX macro, 193
mbc, see multibyte character
mblen function, 191, 192
mbrtow, 193
mbrtowc function, 193
mbs, see multibyte string
mbsrdup, 192
mbsrlen, 190
mbsrtowcs function, 191, 192
mbsrwc, 194
mbstate_t type, 190, 190–194
mean value, 211
member, 73
memchr function, 69, 70, 70, 71, 109, 183, 294
memcmp function, 69, 70, 70, 71
memcpy function, 69, 70, 71, 167, 185, 187, 199,

209, 219, 220
memmove function, 167, 209
memory

virtual, 150
memory leak, 168
memory model, 150
memory_order type, 285, 285, 286
memory_order_acq_rel constant, 285, 285, 286
memory_order_acquire constant, 285, 286
memory_order_consume constant, 278, 285, 286
memory_order_relaxed constant, 285, 285, 286
memory_order_release constant, 285, 286
memory_order_seq_cst constant, 285, 285, 286
mktime function, 92, 109, 109, 110
modf function, 95

INDEX 311

modff function, 95
modfl function, 95
modification order, 279
modularity, 80
moment

raw, 212
MSB, 56
mtx_destroy function, 270
mtx_init function, 270, 297
mtx_lock function, 268, 268–274, 278, 282, 283
mtx_plain constant, 270
mtx_recursive constant, 270
mtx_t type, 241, 265, 268, 268–271, 273, 274,

276–278, 283, 297
mtx_timed constant, 269, 270
mtx_timedlock function, 269, 269, 270, 282
mtx_trylock function, 269, 269, 282
mtx_unlock function, 268, 268–274, 282, 283,

297
multibyte

character, 189
string, 189, 189, 190, 191, 200

multibyte characters, 192
mutex

acquire, 268
hold, 268
release, 268

mutual exclusion, 268

name space, 119
tag, 54

nan function, 95
nanf function, 95
nanl function, 95
NDEBUG macro, 115, 115, 221, 222, 291
nearbyint macro, 95, 96
NEW_LINE label, 242, 247
nextafter macro, 95
nexttoward macro, 95
noreturn macro, 83
not macro, 30, 34, 34
not_eq macro, 30, 34, 55
NULL macro, 139, 139, 140, 232, 292
null pointer, 72, 139, 140, 143, 147, 184, 192, 204,

257
constant, 139, 232

numberline, 182

object, 10, 12
data, 9

object instance, 172
object representation, 150, 151, 152
offsetof macro, 31, 54
once_flag type, 265, 266, 267, 278
ONCE_FLAG_INIT macro, 266, 267
opaque

structure, 142
opaque type, 96
open file, 97
operand, 29
operation

uninterruptible, 256
operator, 9, 13, 29

!=, 22, 33
!!, 34
(), 80
* binary, 31
*=, 32
+ binary, 31
+ unary, 31
++, 33
+=, 32
,, 35
- binary, 31
- unary, 31
--, 33
-=, 32
., 75
/, 31
/=, 32
:, see ternary
<, 33
<<, 58
<<=, 58
<=, 33
=, 32, 75
==, 22, 33
>, 33
>=, 33
>>, 58
>>=, 58
?, see ternary
%, 31
%=, 32
&, 56
&=, 57
&&, 34
[], 65
^, 56
^=, 57
& unary, 134
* unary, 134
->, 141
~, 57
..., 227, 231
##, 226
#, 225
|, 56
|=, 57
||, 34
and, 34
and_eq, 57
bitand, 57
bitor, 57
compl, 57
concatenation, 226
not, 34
object-of, 134
or, 34
or_eq, 57
postfix

decrement, 33
increment, 33

prefix
decrement, 33
increment, 33

312 INDEX

ternary, 21, 35
xor, 57
xor_eq, 57

optimization, 39
or macro, 21, 23, 24, 27, 30, 34, 34, 228
or_eq macro, 30, 57
overflow, 31, 32

parameter list, 219
parentheses, 3
parsing state, 192
pass by reference, 14, 68, 114, 252, 290
pass by value, 68, 75, 128, 290, 292
perror function, 92, 92, 93, 97, 99, 103, 105, 114
platform, 4
platform dependent, 4
plusL label, 242, 248, 248, 250, 251
plusR label, 242, 248, 248, 250
pointer, 23, 53, 133, 134

null, 72
to void, 154, 155

pointer difference, 137
portable, 4, 287
pow macro, 94, 95
precision, 42, 56

floating point, 63
preprocessing, 219
preprocessor, 54
preprocessor conditionals, 94
preprocessor directives, 35
PRId64 macro, 62, 62
PRIi64 macro, 62
print, 3, 4
printf function, 6
printf_s function, 93, 103
PRIo64 macro, 62
PRIu32 macro, 62
PRIu64 macro, 62
PRIX64 macro, 62
PRIx64 macro, 62
prototype, 81
PTRDIFF_MAX macro, 57
PTRDIFF_MIN macro, 57
ptrdiff_t type, 23, 44, 45, 57, 102, 138, 187,

288, 292
punctuation, 8
putc macro, 91
putchar macro, 91, 96, 96, 97, 242, 248
puts function, 20, 27, 28, 45, 90, 92, 93, 96, 97,

99, 103, 104, 127, 128, 291

qsort function, 146, 146–149
qualifier, 52

const, 55
const, 52

quick sort, 147
quick_exit function, 80, 114, 115, 254, 256, 257

r12 hardware register, 216
r13 hardware register, 216
r14 hardware register, 216
race condition, 264
raise function, 80, 250, 254, 255
rand function, 266

rax hardware register, 177, 178, 216
rbp hardware register, 177–180
rbx hardware register, 180, 216
rcx hardware register, 177
rdi hardware register, 215
rdx hardware register, 177–179
read-modify-write, 281
realloc function, 160, 161, 166–168, 171, 183,

199, 200, 293
recursion, 84

infinite, 84
recursive descent parser, 241
refer, 134
reference

array, 68
referenced type, 133
register , 172
release, 280
remainder macro, 95
remove function, 100
remquo macro, 95
rename function, 100
replacement text, 219
representable, 31
representation

binary, 41, 56
floating-point, 41
object, 41, 56, 151
ones’ complement, 59
sign, 41, 59, 151
sign and magnitude, 59
two’s complement, 59

reserved, 8
return, 14
return , 82
rewrite operations, 135
RIGHT label, 242, 247, 250
ring, 56
rint macro, 95, 96
rip hardware register, 215, 216
round macro, 95, 96
rsize_t type, 104, 110, 113
rsp hardware register, 177–180, 216
rvalue, 32

sample, 211
scalar, 23, 134
scalbln macro, 95
scalbn macro, 95, 96
scanf function, 186, 187, 188, 200, 227
SCHAR_MAX macro, 236
scope, 11, 24

block, 11
file, 11

see member, 73
SEEK_CUR macro, 196
SEEK_END macro, 196
SEEK_SET macro, 196
selection, 27
sequence points, 244
sequenced, 240
sequenced-before, 244, 279, 281, 283
sequential consistency, 283, 284

INDEX 313

set intersection, 56
set union, 56
setjmp function, 80, 200, 240, 248, 248–252,

255–257, 260, 296
<setjmp.h>, 248
setlocale function, 113, 113, 114, 189, 195
setvbuf function, 266
sh_count type, 254, 257, 259
sh_counted type, 259
sh_enable type, 254, 255
shadowed variable, 168
shared, 264
short-circuit evaluation, 34, 58
SHRT_MAX macro, 236
side effect, 33
SIG particle, 253
sig_atomic_t type, 241, 257, 260, 296
SIG_DFL macro, 253–255
SIG_ERR macro, 254
SIG_IGN macro, 253, 255
SIGABRT macro, 253–255, 258
SIGFPE macro, 253, 258
SIGILL macro, 253, 258
SIGINT macro, 253, 255, 256, 258
sign representation, 151
signal, 252

asynchronous, 247
handler, 203, 252–257, 260, 264, 278
signal handler, 80
numbers, 253
synchronous, 252

signal function, 240, 254, 254, 257
signal handler, 252
<signal.h>, 253, 254
signal_handler type, 254, 255
signbit macro, 95
SIGSEGV macro, 253, 258
SIGTERM macro, 253–255, 258
sin macro, 28, 94, 95, 96
sinh macro, 95
SIZE_MAX macro, 29, 31, 32, 37, 41, 55, 56, 57,

71, 122, 194, 287
skew, 211
skipspace type, 242, 248
Snake case, 121
snprintf function, 90, 186, 198, 266, 294
source

code/B9-detach.c, 275, 276
code/B9.c, 262, 263, 272, 274
code/basic_blocks.c, 247, 248, 253, 255
code/circular.c, 163–167
code/crash.c, 158
code/endianness.c, 152, 156
code/euclid.h, 84, 85
code/fibonacci.c, 86
code/fibonacci2.c, 88
code/fibonacciCache.c, 87
code/generic.h, 226, 234, 236
code/getting-started.c, 3, 8, 12–14
code/heron_k.h, 124
code/life.c, 271
code/life.h, 264, 268
code/lifetime-assembler.s, 177

code/lifetime-optimized.s, 179
code/lifetime.c, 174
code/macro_trace.c, 222, 224, 225, 228, 229
code/macro_trace.h, 221–231, 237–239
code/mbstrings-main.c, 189
code/mbstrings.c, 191–194
code/mbstrings.h, 191
code/numberline.c, 181–186, 197–199
code/rationals.c, 129–131, 141, 142
code/rationals.h, 129
code/sequence_point.c, 244
code/sighandler.c, 254, 258
code/sighandler.h, 254, 258, 259
code/stats.h, 214, 215
code/strtoul.c, 107, 108
code/timespec.c, 140, 212, 215
code/va_arg.c, 233
code/yday.c, 74, 75, 81

source file, 5
sprintf function, 185, 199, 294
sprintnumbers, 185
sqrt macro, 28, 35, 95, 96
srand function, 266
sscanf function, 186
SSE, 215
stack, 177
standard deviation

relative, 211
state, 40

abstract, 38, 40, 41, 50, 60, 65, 129, 148, 150,
153, 154, 241, 278, 279

defined, 31, 32, 60, 155, 175, 176, 244, 265, 266
observable, 40

state machine
abstract, 41

statement, 3
selection, 21

statements, 13
static , 171
static_assert macro, 94, 94, 107, 115
<stdalign.h>, 159
<stdarg.h>, 232
<stdargs.h>, 81
<stdatomic.h>, 257
<stdbool.h>, 22, 58
<stddef.h>, 45, 137
stderr macro, 97, 97, 103, 105, 113, 114, 137,

181, 200, 221–225, 228, 230, 237, 250, 255
stdin macro, 103, 104, 105, 181, 186, 186, 200,

209, 241, 242, 248, 263, 269, 274, 280
<stdint.h>, 29, 45, 56, 61
<stdio.h>, 10, 27, 92, 96
<stdlib.h>, 10, 26, 98, 146, 160, 161
<stdnoreturn.h>, 83
stdout macro, 91, 97, 97, 99, 100, 103, 105, 158,

181, 189, 200, 242, 247, 248, 250, 273
storage, 155

class, 170
storage class, 170
storage duration, 170
storage durations, 170

allocated, 170
automatic, 170

314 INDEX

static, 170
thread, 170

storage instance, 155, 160
storage specifier, 81
strchr function, 70, 71, 109, 183, 184, 191, 294
strcmp function, 70, 70, 71, 122, 144
strcoll function, 70, 70, 114
strcpy function, 69, 70, 71, 144, 190
strcspn function, 70, 71, 109, 184, 187, 294
stream, 96
strftime function, 109, 110, 110–112, 114
string literal, 3
<string.h>, 69, 109
stringification, 225
strings, 68
strlen function, 19, 69, 70, 71, 80, 144, 181, 185,

190, 191, 198, 199
strpbrk function, 109
strrchr function, 109
strspn function, 70, 71, 108, 109, 184, 187, 191,

294
strstr function, 109, 191
strtod function, 26, 83, 90, 92, 107, 187, 200
strtof function, 107
strtoimax function, 107
strtok function, 109
strtol function, 107, 187, 227
strtold function, 107
strtoll function, 107
strtoul function, 107, 107, 108, 182, 187, 226,

227
strtoull function, 107, 182, 183, 227, 275
strtoumax function, 107
structure

member, 73, 74
strxfrm function, 114
sugar, 4
swap, 133
switch , 27
symmetric difference, 56
synchronization, 279
synchronizes-with, 281
system call, 210

tag, 78
tag name, 78
tan macro, 95
tanh macro, 95
task, 261
temporary lifetime, 173
text mode IO, 195
tgamma macro, 95
<tgmath.h>, 25, 35, 48, 63, 94, 218, 234
thrd_create function, 92, 240, 261, 262, 262,

275, 276, 281, 282
thrd_current function, 276
thrd_detach function, 276, 276, 277
thrd_equal function, 276
thrd_exit function, 240, 275, 275, 276, 281, 282
thrd_join function, 261, 263, 278, 281, 282
thrd_sleep function, 276, 276
thrd_start_t type, 261, 262
thrd_t type, 261, 262, 262, 275, 276

thrd_yield function, 276, 276
thread, 261
thread-specific storage, 268
thread_local macro, 171, 267, 268, 277, 297
<threads.h>, 267, 268
time function, 45, 76, 109, 109, 110, 111, 111,

125, 266
<time.h>, 45, 74, 75, 109, 120
time_t type, 44, 45, 76, 77, 109, 109–111, 141
TIME_UTC macro, 111, 213, 215, 216, 271
timespec tagname, 76–78, 109, 110, 111, 120,

122, 126, 140, 212, 215, 269, 271, 273, 276
timespec_get function, 109, 110, 111, 111, 210,

212, 213, 215–217, 271
tm tagname, 74, 74–78, 109–111
tm_hour struct member, 74, 74, 76, 77
tm_isdst struct member, 74, 74, 75, 77, 109
tm_mday struct member, 74, 74–77, 109
tm_min struct member, 74, 74, 76, 77
tm_mon struct member, 74, 74–76, 109
tm_sec struct member, 74, 74, 76, 77, 109
tm_wday struct member, 74, 75, 109
tm_yday struct member, 74, 75, 76, 109
tm_year struct member, 74, 74–76, 109
to particle, 228
tolower function, 105
tooDeep label, 242, 248, 248–250
toupper function, 105, 107
Trailing semicolons, 128
trailing white space, 100
translation unit, 124
trap, 60
trap representation, 138
traps, 252
true macro, 20, 22–25, 27, 33, 34, 34, 43, 50, 55,

57, 58, 59, 60, 66, 71, 85, 87, 93, 108, 122,
237, 263, 264, 269, 271, 280, 284, 287–289

trunc macro, 95, 96
tss_create function, 268, 277
tss_delete function, 268
tss_dtor_t type, 268
tss_get function, 268
tss_set function, 268
tss_t type, 268, 281
TU, 124
tv_nsec struct member, 76, 77, 110, 111, 141,

212, 213
tv_sec struct member, 76, 77, 110, 120, 140,

141, 271
type, 9, 10, 10, 40

derived, 42
incomplete, 51
narrow, 42

type promotion, 42

UCHAR_MAX macro, 57, 152, 153, 153, 236, 293
uint16_t type, 62
uint32_t type, 62, 62
UINT64_C macro, 62, 62
UINT64_MAX macro, 62
uint64_t type, 62, 213, 215
UINT8_C macro, 62
UINT8_MAX macro, 62

INDEX 315

uint8_t type, 62
UINT_MAX macro, 50, 56, 57, 59–61, 236
uintmax_t type, 45, 102, 107, 187
ULLONG_MAX macro, 56, 236, 237
ULONG_MAX macro, 56, 108, 236, 237
undefined behavior, 60, 60, 60, 70, 72, 73, 100,

102, 134, 138, 139, 154, 156, 157, 170, 174,
209, 253, 264

ungetc function, 263, 269, 279
Unicode, 190
uninterruptible operation, 256
union, 150
unsigned, 18
USHRT_MAX macro, 236
UTF-16, 194
UTF-32, 194
UTF-8, 194, 195

va_arg function, 232, 233, 234, 295
va_copy function, 232
va_end function, 232, 233
va_list type, 232, 233, 234, 295
va_start function, 232, 233
value, 10, 10, 38, 40
variable, 10

condition, 271
global, 128

variable-length arrays, 50
variables, 9
variadic functions, 219
vfprintf function, 233
visible, 11
VLA, 50, see variable-length array, 172, 175
void

function, 81
parameter list, 81
pointer, 154, 155

<wchar.h>, 190
wchar_t type, 187, 190, 191–194
wcs, see wide character string
wcs particle, 191
<wctype.h>, 192
well defined, 31
WEOF macro, 194
while , 24
wide character, 190
wide character string, 191
wide character strings, 191
wide characters, 191
word boundary, 157
wrapper, 85, 142

xmm0 hardware register, 215
xmm1 hardware register, 215
xmm2 hardware register, 215
xmm3 hardware register, 215
xmm4 hardware register, 215
xor macro, 30, 57
xor_eq macro, 30, 57

	About this book
	C versions
	C and C++
	Requirements
	Source code
	Exercises and challenges
	Organization
	Author

	Level 0. Encounter
	1. Getting started
	1.1. Imperative programming
	1.2. Compiling and running

	Summary
	2. The principal structure of a program
	2.1. Grammar
	2.2. Declarations
	2.3. Definitions
	2.4. Statements

	Summary

	Level 1. Acquaintance
	Buckle up
	3. Everything is about control
	3.1. Conditional execution
	3.2. Iterations
	3.3. Multiple selection

	Summary
	4. Expressing computations
	4.1. Arithmetic
	4.2. Operators that modify objects
	4.3. Boolean context
	4.4. The ternary or conditional operator
	4.5. Evaluation order

	Summary
	5. Basic values and data
	5.1. The abstract state machine
	5.2. Basic types
	5.3. Specifying values
	5.4. Implicit conversions
	5.5. Initializers
	5.6. Named constants
	5.7. Binary representions

	Summary
	6. Derived data types
	6.1. Arrays
	6.2. Pointers as opaque types
	6.3. Structures
	6.4. New names for types: type aliases

	Summary
	7. Functions
	7.1. Simple functions
	7.2. main is special
	7.3. Recursion

	Summary
	8. C library functions
	8.1. General properties of the C library and its functions
	8.2. Mathematics
	8.3. Input, output, and file manipulation
	8.4. String processing and conversion
	8.5. Time
	8.6. Runtime environment settings
	8.7. Program termination and assertions

	Summary

	Level 2. Cognition
	9. Style
	9.1. Formatting
	9.2. Naming

	Summary
	10. Organization and documentation
	10.1. Interface documentation
	10.2. Implementation

	Summary
	11. Pointers
	11.1. Pointer operations
	11.2. Pointers and structures
	11.3. Pointers and arrays
	11.4. Function pointers

	Summary
	12. The C memory model
	12.1. A uniform memory model
	12.2. Unions
	12.3. Memory and state
	12.4. Pointers to unspecific objects
	12.5. Explicit conversions
	12.6. Effective types
	12.7. Alignment

	Summary
	13. Storage
	13.1. malloc and friends
	13.2. Storage duration, lifetime, and visibility
	13.3. Digression: using objects "before" their definition
	13.4. Initialization
	13.5. Digression: a machine model

	Summary
	14. More involved processing and IO
	14.1. Text processing
	14.2. Formatted input
	14.3. Extended character sets
	14.4. Binary streams
	14.5. Error checking and cleanup

	Summary

	Level 3. Experience
	15. Performance
	15.1. Inline functions
	15.2. Using restrict qualifiers
	15.3. Measurement and inspection

	Summary
	16. Function-like macros
	16.1. How function-like macros work
	16.2. Argument checking
	16.3. Accessing the calling context
	16.4. Default arguments
	16.5. Variable-length argument lists
	16.6. Type-generic programming

	Summary
	17. Variations in control flow
	17.1. A complicated example
	17.2. Sequencing
	17.3. Short jumps
	17.4. Functions
	17.5. Long jumps
	17.6. Signal handlers

	Summary
	18. Threads
	18.1. Simple inter-thread control
	18.2. Race-free initialization and destruction
	18.3. Thread-local data
	18.4. Critical data and critical sections
	18.5. Communicating through condition variables
	18.6. More sophisticated thread management

	Summary
	19. Atomic access and memory consistency
	19.1. The ``happened before'' relation
	19.2. C library calls that provide synchronization
	19.3. Sequential consistency
	19.4. Other consistency models

	Summary

	Takeaways
	Bibliography
	Index

